×

zbMATH — the first resource for mathematics

An adaptive SVD-Krylov reduced order model for surrogate based structural shape optimization through isogeometric boundary element method. (English) Zbl 1441.74187
Summary: This work presents an adaptive Singular Value Decomposition (SVD)-Krylov reduced order model to solve structural optimization problems. By utilizing the SVD, it is shown that the solution space of a structural optimization problem can be decomposed into a geometry subspace and a design subspace. Any structural response of a specific configuration in the optimization problem is then obtained through a linear combination of the geometry and design subspaces. This indicates that in solving for the structural response, a Krylov based iterative solver could be augmented by using the geometry subspace to accelerate its convergence. Unlike conventional surrogate based optimization schemes in which the approximate model is constructed only through the maximum value of each structural response, the design subspace can here be approximated by a set of surrogate models. This provides a compressed expression of the system information which will considerably reduce the computational resources required in sample training for the structural analysis prediction. Further, an adaptive optimization strategy is studied to balance the optimal performance and the computational efficiency. In order to give a higher fidelity geometric description, to avoid re-meshing and to improve the convergence properties of the solution, the Isogeometric Boundary Element Method (IGABEM) is used to perform the stress analysis at each stage in the process. We report on the benchmarking of the proposed method through two test models, and apply the method to practical engineering optimization problems. Numerical examples show the performance gains that are achievable in comparison to most existing meta-heuristic methods, and demonstrate that solution accuracy is not affected by the model order reduction.

MSC:
74P20 Geometrical methods for optimization problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
65D07 Numerical computation using splines
65N38 Boundary element methods for boundary value problems involving PDEs
Software:
ABC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yildiz, A. R., Comparison of evolutionary-based optimization algorithms for structural design optimization, Eng. Appl. Artif. Intell., 26, 1, 327-333 (2013), URL http://www.sciencedirect.com/science/article/pii/S0952197612001200
[2] Goldberg, D. E.; Holland, J. H., Genetic algorithms and machine learning, Mach. Learn., 3, 2, 95-99 (1988)
[3] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 4598, 671-680 (1983) · Zbl 1225.90162
[4] Poli, R.; Kennedy, J.; Blackwell, T., Particle swarm optimization, Swarm Intell., 1, 1, 33-57 (2007)
[5] Karaboga, D.; Basturk, B., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39, 3, 459-471 (2007) · Zbl 1149.90186
[6] Storn, R.; Price, K., Differential evolution a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 4, 341-359 (1997) · Zbl 0888.90135
[7] Yang, X.-S., Nature-Inspired Metaheuristic Algorithms (2008), Luniver Press
[8] Barthelemy, J. F.M.; Haftka, R. T., Approximation concepts for optimum structural design — a review, Struct. Optim., 5, 3, 129-144 (1993)
[9] Haftka, R. T.; Scott, E. P.; Cruz, J. R., Optimization and experiments: A survey, Appl. Mech. Rev., 51, 7, 435 (1998)
[10] Berke, L.; Hajela, P., Applications of artificial neural nets in structural mechanics, Struct. Optim., 4, 2, 90-98 (1992)
[11] Nikolaidis, E.; Long, L.; Ling, Q., Neural networks and response surface polynomials for design of vehicle joints, Comput. Struct., 75, 6, 593-607 (2000)
[12] Giunta, A.; Watson, L., A comparison of approximation modeling techniques - polynomial versus interpolating models, (7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (1998), American Institute of Aeronautics and Astronautics)
[13] Simpson, T.; Mistree, F.; Korte, J.; Mauery, T., Comparison of response surface and kriging models for multidisciplinary design optimization, (7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (1998), American Institute of Aeronautics and Astronautics)
[15] Wang, D.; Wu, Z.; Fei, Y.; Zhang, W., Structural design employing a sequential approximation optimization approach, Comput. Struct., 134, 75-87 (2014), URL http://www.sciencedirect.com/science/article/pii/S0045794913003362
[16] Amsallem, D.; Farhat, C., Interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J., 46, 7, 1803-1813 (2008)
[17] Amsallem, D.; Cortial, J.; Carlberg, K.; Farhat, C., A method for interpolating on manifolds structural dynamics reduced-order models, Internat. J. Numer. Methods Engrg., 80, 9, 1241-1258 (2009) · Zbl 1176.74077
[18] Prud’homme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G., Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Eng., 124, 1, 70 (2002)
[19] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15, 3, 1 (2007)
[20] Hoang, K. C.; Kerfriden, P.; Khoo, B.; Bordas, S., An efficient goal-oriented sampling strategy using reduced basis method for parametrized elastodynamic problems, Numer. Methods Partial Differential Equations, 31, 2, 575-608 (2015) · Zbl 1325.74143
[21] Hoang, K. C.; Kerfriden, P.; Bordas, S. P.A., A fast, certified and “tuning free” two-field reduced basis method for the metamodelling of affinely-parametrised elasticity problems, Comput. Methods Appl. Mech. Engrg., 298, 121-158 (2016) · Zbl 1425.74465
[22] Zahr, M. J.; Farhat, C., Progressive construction of a parametric reduced-order model for pde-constrained optimization, Internat. J. Numer. Methods Engrg., 102, 5, 1111-1135 (2015) · Zbl 1352.49029
[23] Paul-Dubois-Taine, A.; Amsallem, D., An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models, Internat. J. Numer. Methods Engrg., 102, 5, 1262-1292 (2015) · Zbl 1352.65217
[24] Cui, T.; Marzouk, Y. M.; Willcox, K. E., Data-driven model reduction for the bayesian solution of inverse problems, Internat. J. Numer. Methods Engrg., 102, 5, 966-990 (2015) · Zbl 1352.65445
[25] Braconnier, T.; Ferrier, M.; Jouhaud, J.-C.; Montagnac, M.; Sagaut, P., Towards an adaptive pod/svd surrogate model for aeronautic design, Comput. & Fluids, 40, 1, 195-209 (2011) · Zbl 1245.76063
[26] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[27] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.; Rabczuk, T., Isogeometric analysis: An overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015)
[28] Atroshchenko, E.; Tomar, S.; Xu, G.; Bordas, S. P., Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub- and super-geometric analysis to geometry-independent field approximaTion (GIFT), Internat. J. Numer. Methods Engrg. (2018)
[29] Simpson, R.; Bordas, S.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209-212, 87-100 (2012) · Zbl 1243.74193
[30] Simpson, R.; Bordas, S.; Lian, H.; Trevelyan, J., An isogeometric boundary element method for elastostatic analysis: 2d implementation aspects, Comput. Struct., 118, 2-12 (2013)
[31] Scott, M.; Simpson, R.; Evans, J.; Lipton, S.; Bordas, S.; Hughes, T.; Sederberg, T., Isogeometric boundary element analysis using unstructured t-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221 (2013) · Zbl 1297.74156
[32] Wang, Y.; Benson, D., Multi-patch nonsingular isogeometric boundary element analysis in 3D, Comput. Methods Appl. Mech. Engrg., 293, 71-91 (2015) · Zbl 1425.65203
[33] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput.-Aided Des., 43, 11, 1427-1437 (2011)
[34] Lian, H.; Kerfriden, P.; Bordas, S. P.A., Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity, Internat. J. Numer. Methods Engrg., 106, 12, 972-1017 (2016) · Zbl 1352.74467
[35] Lian, H.; Kerfriden, P.; Bordas, S., Shape optimization directly from CAD: An isogeometric boundary element approach using t-splines, Comput. Methods Appl. Mech. Engrg., 317, 1-41 (2017)
[36] Peake, M.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for two-dimensional helmholtz problems, Comput. Methods Appl. Mech. Engrg., 259, 93-102 (2013) · Zbl 1286.65176
[37] Simpson, R.; Scott, M.; Taus, M.; Thomas, D.; Lian, H., Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265-290 (2014) · Zbl 1296.65175
[38] Peake, M.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 284, 762-780 (2015) · Zbl 1425.65202
[39] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S., Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Engrg. (2016)
[40] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Linear elastic fracture simulation directly from CAD: 2d NURBS-based implementation and role of tip enrichment, Int. J. Fract., 204, 1, 55-78 (2016)
[41] Rokhlin, V., Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 2, 187-207 (1985) · Zbl 0629.65122
[42] Peirce, A. P.; Napier, J. A.L., A spectral multipole method for efficient solution of large-scale boundary element models in elastostatics, Internat. J. Numer. Methods Engrg., 38, 23, 4009-4034 (1995) · Zbl 0852.73076
[43] Liu, Y.; Nishimura, N., The fast multipole boundary element method for potential problems: a tutorial, Eng. Anal. Bound. Elem., 30, 5, 371-381 (2006) · Zbl 1187.65134
[44] Li, S.; Trevelyan, J.; Zhang, W.; Wang, D., Accelerating isogeometric boundary element analysis for three-dimensional elastostatics problems through black-box fast multipole method with proper generalized decomposition, Internat. J. Numer. Methods Engrg. (2018)
[45] Hackbusch, W., A sparse matrix arithmetic based on \(\cal h\) -matrices. part i: Introduction to \({\cal h}\) -matrices, Comput, 62, 2, 89-108 (1999) · Zbl 0927.65063
[46] Bebendorf, M.; Kriemann, R., Fast parallel solution of boundary integral equations and related problems, Comput. Vis. Sci., 8, 3-4, 121-135 (2005)
[47] Marussig, B.; Zechner, J.; Beer, G.; Fries, T.-P., Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Mech. Engrg., 284, 458-488 (2015) · Zbl 1423.74101
[48] Phillips, J.; White, J., A precorrected-FFT method for electrostatic analysis of complicated 3-D structures, IEEE Trans. Comput.-Aided Des., 16, 10, 1059-1072 (1997)
[49] Fata, S. N., Fast galerkin BEM for 3D-potential theory, Comput. Mech., 42, 3, 417-429 (2008) · Zbl 1163.65088
[50] Yan, Z.; Zhang, J.; Ye, W., Rapid solution of 3-D oscillatory elastodynamics using the pFFT accelerated BEM, Eng. Anal. Bound. Elem., 34, 11, 956-962 (2010) · Zbl 1244.74202
[51] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[52] Saad, Y., Analysis of augmented krylov subspace methods, SIAM J. Matrix Anal. Appl., 18, 2, 435-449 (1997) · Zbl 0871.65026
[53] Baglama, J.; Calvetti, D.; Golub, G. H.; Reichel, L., Adaptively preconditioned GMRES algorithms, SIAM J. Sci. Comput., 20, 1, 243-269 (1998) · Zbl 0954.65026
[54] Kerfriden, P.; Gosselet, P.; Adhikari, S.; Bordas, S., Bridging proper orthogonal decomposition methods and augmented newton – krylov algorithms: An adaptive model order reduction for highly nonlinear mechanical problems, Comput. Methods Appl. Mech. Engrg., 200, 5-8, 850-866 (2011) · Zbl 1225.74092
[55] Chinesta, F.; Leygue, A.; Bordeu, F.; Aguado, J. V.; Cueto, E.; Gonzalez, D.; Alfaro, I.; Ammar, A.; Huerta, A., PGD-based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., 20, 1, 31-59 (2013) · Zbl 1354.65100
[56] Ammar, A.; Huerta, A.; Chinesta, F.; Cueto, E.; Leygue, A., Parametric solutions involving geometry: A step towards efficient shape optimization, Comput. Methods Appl. Mech. Engrg., 268, 178-193 (2014) · Zbl 1295.74080
[57] Eiermann, M.; Ernst, O. G.; Schneider, O., Analysis of acceleration strategies for restarted minimal residual methods, J. Comput. Appl. Math., 123, 1-2, 261-292 (2000) · Zbl 0968.65016
[58] COX, M. G., The numerical evaluation of b -splines, IMA J. Appl. Math., 10, 2, 134-149 (1972) · Zbl 0252.65007
[59] de Boor, C., On calculating with b-splines, J. Approx. Theory, 6, 1, 50-62 (1972) · Zbl 0239.41006
[60] Liu, Y. J.; Rudolphi, T. J., New identities for fundamental solutions and their applications to non-singular boundary element formulations, Comput. Mech., 24, 4, 286-292 (1999) · Zbl 0969.74073
[61] Hayami, K., A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals (1992), Springer Berlin Heidelberg
[62] Price, K.; Storn, R. M.; Lampinen, J. A., Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) (2006), Springer, URL https://www.amazon.com/Differential-Evolution-Practical-Optimization-Computing-ebook/dp/B00DZ0PUSY?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00DZ0PUSY
[63] Xiao, M.; Breitkopf, P.; Coelho, R. F.; Knopf-Lenoir, C.; Sidorkiewicz, M.; Villon, P., Model reduction by cpod and kriging, Struct. Multidiscip. Optim., 41, 4, 555-574 (2010) · Zbl 1274.90365
[64] Goury, O.; Amsallem, D.; Bordas, S. P.A.; Liu, W. K.; Kerfriden, P., Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to bayesian optimization, Comput. Mech., 58, 2, 213-234 (2016) · Zbl 1398.74053
[65] Wu, Z.; Wang, D.; N, P. O.; Jiang, Z.; Zhang, W., Unified estimate of gaussian kernel width for surrogate models, Neurocomputing, 203, 41-51 (2016)
[66] Wu, Z.; Wang, D.; Okolo, P. N.; Zhao, K.; Zhang, W., Efficient space-filling and near-orthogonality sequential latin hypercube for computer experiments, Comput. Methods Appl. Mech. Engrg., 324, 348-365 (2017)
[67] Drohmann, M.; Carlberg, K., The romes method for statistical modeling of reduced-order-model error, SIAM/ASA J. Uncertain. Quantif., 3, 1, 116-145 (2015) · Zbl 1322.65029
[68] Brand, M., Fast low-rank modifications of the thin singular value decomposition, Linear Algebra Appl., 415, 1, 20-30 (2006) · Zbl 1088.65037
[69] Queipo, N. V.; Haftka, R. T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P. K., Surrogate-based analysis and optimization, Prog. Aerosp. Sci., 41, 1, 1-28 (2005)
[70] Jansen, P.; Perez, R., Constrained structural design optimization via a parallel augmented lagrangian particle swarm optimization approach, Comput. Struct., 89, 13-14, 1352-1366 (2011)
[71] Perez, R.; Behdinan, K., Particle swarm approach for structural design optimization, Comput. Struct., 85, 19-20, 1579-1588 (2007)
[72] Kaveh, A.; Talatahari, S., Size optimization of space trusses using big bang – big crunch algorithm, Comput. Struct., 87, 17-18, 1129-1140 (2009)
[73] Camp, C. V.; Bichon, B. J., Design of space trusses using ant colony optimization, J. Struct. Eng., 130, 5, 741-751 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.