×

zbMATH — the first resource for mathematics

Characterization of hybrid piezoelectric nanogenerators through asymptotic homogenization. (English) Zbl 1441.74074
Summary: In the framework of energy scavenging for applications in flexible/stretchable electronics, hybrid piezoelectric nanogenerators are investigated. They are made up with zinc oxide (ZnO) nanorods, embedded in a polymeric matrix, and grown on a flexible polymeric support. The ZnO nanorods are arranged in clusters, forming nearly regular distributions, so that periodic topologies can be realistically assumed. Focus is on a dynamic multi-field asymptotic homogenization approach, proposed to grasp the overall constitutive behaviour of such complex microstructures. A set of applications, both in static and dynamic regime, is proposed to explore different design paradigms, related to nanogenerators based on three working principles. Both extension and bending nanogenerators are, indeed, analysed, considering either extension along the nanorods axis, or orthogonally to it. The study of the wave propagation is, also, exploited to comprehend the main features of such piezoelectric devices in the dynamic regime.
MSC:
74F15 Electromagnetic effects in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wang, Z. L.; Song, J., Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 5771, 242-246 (2006)
[2] Wang, J.; Kulkarni, A.; Ke, F.; Bai, Y.; Zhou, M., Novel mechanical behavior of zno nanorods, Comput. Methods Appl. Mech. Engrg., 197, 41, 3182-3189 (2008), Recent Advances in Computational Study of Nanostructures. · Zbl 1159.74449
[3] Briscoe, J.; Dunn, S., Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters, Nano Energy, 14, 15-29 (2015), Special issue on the 2nd International Conference on Nanogenerators and Piezotronics (NGPT 2014)
[4] McCarthy, J.; Watkins, S.; Deivasigamani, A.; John, S., Fluttering energy harvesters in the wind: A review, J. Sound Vib., 361, 355-377 (2016)
[5] Jin, L.; Chen, J.; Zhang, B.; Deng, W.; Zhang, L.; Zhang, H.; Huang, X.; Zhu, M.; Yang, W.; Wang, Z. L., Self-powered safety helmet based on hybridized nanogenerator for emergency, ACS Nano, 10, 8, 7874-7881 (2016)
[6] Zhang, N.; Chen, J.; Huang, Y.; Guo, W.; Yang, J.; Du, J.; Fan, X.; Tao, C., A wearable all-solid photovoltaic textile, Adv. Mater., 28, 2, 263-269 (2016)
[7] Ahmed, A.; Saadatnia, Z.; Hassan, I.; Zi, Y.; Xi, Y.; He, X.; Zu, J.; Wang, Z. L., Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy, Adv. Energy Mater., 7, 7, Article 1601705 pp. (2017)
[8] Li, J.; Zhu, Z.; Fang, L.; Guo, S.; Erturun, U.; Zhu, Z.; West, J. E.; Ghosh, S.; Kang, S. H., Analytical, numerical, and experimental studies of viscoelastic effects on the performance of soft piezoelectric nanocomposites, Nanoscale, 9, 14215-14228 (2017)
[9] Li, M.; Porter, A. L.; Wang, Z. L., Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling, Nano Energy, 34, 93-102 (2017)
[10] Saadatnia, Z.; Asadi, E.; Askari, H.; Zu, J.; Esmailzadeh, E., Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting, Int. J. Energy Res., 41, 14, 2392-2404 (2017)
[11] Wang, Z. L.; Jiang, T.; Xu, L., Toward the blue energy dream by triboelectric nanogenerator networks, Nano Energy, 39, 9-23 (2017)
[12] Liu, R.; Kuang, X.; Deng, J.; Wang, Y.-C.; Wang, A. C.; Ding, W.; Lai, Y.-C.; Chen, J.; Wang, P.; Lin, Z., Shape memory polymers for body motion energy harvesting and self-powered mechanosensing, Adv. Mater., 30, 8, Article 1705195 pp. (2018)
[13] Askari, H.; Hashemi, E.; Khajepour, A.; Khamesee, M. B.; Wang, Z. L., Tire condition monitoring and intelligent tires using nanogenerators based on piezoelectric, electromagnetic, and triboelectric effects, Adv. Mater. Technol., 4, 1, Article 1800105 pp. (2019)
[14] Yi, G.-C.; Wang, C.; Park, W. I., Zno nanorods: synthesis, characterization and applications, Semicond. Sci. Technol., 20, 4, S22 (2005)
[15] Fan, F. R.; Tang, W.; Wang, Z. L., Flexible nanogenerators for energy harvesting and self-powered electronics, Adv. Mater., 28, 22, 4283-4305 (2016)
[16] Yang, D.; Qiu, Y.; Jiang, Q.; Guo, Z.; Song, W.; Xu, J.; Zong, Y.; Feng, Q.; Sun, X., Patterned growth of zno nanowires on flexible substrates for enhanced performance of flexible piezoelectric nanogenerators, Appl. Phys. Lett., 110, 6, Article 063901 pp. (2017)
[17] Stassi, S.; Cauda, V.; Ottone, C.; Chiodoni, A.; Pirri, C. F.; Canavese, G., Flexible piezoelectric energy nanogenerator based on zno nanotubes hosted in a polycarbonate membrane, Nano Energy, 13, 474-481 (2015)
[18] Choi, M.; Murillo, G.; Hwang, S.; Kim, J. W.; Jung, J. H.; Chen, C.-Y.; Lee, M., Mechanical and electrical characterization of pvdf-zno hybrid structure for application to nanogenerator, Nano Energy, 33, 462-468 (2017)
[19] Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter, 16, 25, R829-R858 (2004)
[20] Bakhvalov, N.; Panasenko, G., Homogenization: Averaging Processes in Periodic Media (1984), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht-Boston-London · Zbl 0607.73009
[21] Gambin, B.; Kröner, E., Higher order terms in the homogenized stressstrain relation of periodic elastic media, physica status solidi (b), Internat. J. Engrg. Sci., 151, 2, 513-519 (1989)
[22] Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 6, 1482-1518 (1992) · Zbl 0770.35005
[23] Boutin, C., Microstructural effects in elastic composites, Int. J. Solids Struct., 33, 1023-1051 (1996) · Zbl 0920.73282
[24] Fish, J.; Chen, W., Higher-order homogenization of initial/boundary-value problem, J. Eng. Mech., 127, 12, 1223-1230 (2001)
[25] Andrianov, I. V.; Bolshakov, V. I.; Danishevs’kyy, V. V.; Weichert, D., Higher order asymptotic homogenization and wave propagation in periodic composite materials, (Proceedings of the Royal Society of London a: Mathematical, Physical and Engineering Sciences, Vol. 464 (2008)), 1181-1201 · Zbl 1153.74024
[26] Bacigalupo, A., Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits, Meccanica, 49, 6, 1407-1425 (2014) · Zbl 1396.74089
[27] Smyshlyaev, V.; Cherednichenko, K., On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media, J. Mech. Phys. Solids, 48, 6, 1325-1357 (2000) · Zbl 0984.74065
[28] Peerlings, R.; Fleck, N., Computational evaluation of strain gradient elasticity constants, Int. J. Multiscale Comput. Eng., 2, 4 (2004)
[29] Bacigalupo, A.; Gambarotta, L., Computational two-scale homogenization of periodic masonry: Characteristic lengths and dispersive waves, Comput. Methods Appl. Mech. Engrg., 213-216, 16-28 (2012) · Zbl 1243.74166
[30] Bacigalupo, A.; Gambarotta, L., Second-gradient homogenized model for wave propagation in heterogeneous periodic media, Int. J. Solids Struct., 51, 5, 1052-1065 (2014)
[31] Cherednichenko, K. D.; Evans, J. A., Homogenisation of thin periodic frameworks with high-contrast inclusions, J. Math. Anal. Appl., 473, 2, 658-679 (2019) · Zbl 07052444
[32] Kamotski, I. V.; Smyshlyaev, V. P., Two-scale homogenization for a general class of high contrast pde systems with periodic coefficients, Appl. Anal., 98, 1-2, 64-90 (2019) · Zbl 1418.35027
[33] Kouznetsova, V.; Geers, M.; Brekelmans, W., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput. Methods Appl. Mech. Engrg., 193, 48, 5525-5550 (2004) · Zbl 1112.74469
[34] Scarpa, F.; Adhikari, S.; Phani, A. S., Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology, 20, 6, Article 065709 pp. (2009)
[35] Bacigalupo, A.; Gambarotta, L., Second-order computational homogenization of heterogeneous materials with periodic microstructure, ZAMM J. Appl. Math. Mech., 90, 796-811 (2010) · Zbl 1380.74102
[36] Scarpa, F.; Adhikari, S.; Gil, A. J.; Remillat, C., The bending of single layer graphene sheets: the lattice versus continuum approach, Nanotechnology, 21, 12, Article 125702 pp. (2010)
[37] De Bellis, M. L.; Addessi, D., A Cosserat based multi – scale model for masonry structures, Int. J. Multiscale Comput. Eng., 9, 5, 543-563 (2011)
[38] Li, X.; Zhang, J.; Zhang, X., Micro-macro homogenization of gradient-enhanced cosserat media, Eur. J. Mech. A Solids, 30, 3, 362-372 (2011) · Zbl 1278.74141
[39] Addessi, D.; De Bellis, M. L.; Sacco, E., Micromechanical analysis of heterogeneous materials subjected to overall cosserat strains, Mech. Res. Commun., 54, 27-34 (2013)
[40] Chen, Y.; Scarpa, F.; Liu, Y.; Leng, J., Elasticity of anti-tetrachiral anisotropic lattices, Int. J. Solids Struct., 50, 6, 996-1004 (2013)
[41] Dirrenberger, J.; Forest, S.; Jeulin, D., Effective elastic properties of auxetic microstructures: anisotropy and structural applications, Int. J. Mech. Mater. Des., 9, 1, 21-33 (2013)
[42] Lesičar, T.; Tonković, Z.; Sorić, J., A second-order two-scale homogenization procedure using c-1 macrolevel discretization, Comput. Mech., 54, 2, 425-441 (2014) · Zbl 1398.74355
[43] Trovalusci, P.; Ostoja-Starzewski, M.; Bellis, M. L.D.; Murrali, A., Scale-dependent homogenization of random composites as micropolar continua, Eur. J. Mech. A Solids, 49, 396-407 (2015)
[44] Addessi, D.; De Bellis, M. L.; Sacco, E., A micromechanical approach for the cosserat modeling of composites, Meccanica, 51, 3, 569-592 (2016) · Zbl 1339.74004
[45] Sepe, V.; Auricchio, F.; Marfia, S.; Sacco, E., Homogenization techniques for the analysis of porous sma, Comput. Mech., 57, 5, 755-772 (2016) · Zbl 1382.74105
[46] Biswas, R.; Poh, L. H., A micromorphic computational homogenization framework for heterogeneous materials, J. Mech. Phys. Solids, 102, 187-208 (2017)
[47] Wang, Z.-P.; Poh, L. H.; Dirrenberger, J.; Zhu, Y.; Forest, S., Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization, Comput. Methods Appl. Mech. Engrg., 323, 250-271 (2017)
[48] Reccia, E.; De Bellis, M.; Trovalusci, P.; Masiani, R., Sensitivity to material contrast in homogenization of random particle composites as micropolar continua, Composites B, 136, 39-45 (2018)
[49] Trovalusci, P.; Bellis, M. L.D.; Masiani, R., A multiscale description of particle composites: From lattice microstructures to micropolar continua, Composites B, 128, 164-173 (2017)
[50] Bansal, M.; Singh, I.; Patil, R.; Claus, S.; Bordas, S., A simple and robust computational homogenization approach for heterogeneous particulate composites, Comput. Methods Appl. Mech. Engrg., 349, 45-90 (2019)
[51] Biswas, R.; Shedbale, A.; Poh, L., Nonlinear analyses with a micromorphic computational homogenization framework for composite materials, Comput. Methods Appl. Mech. Engrg., 350, 362-395 (2019)
[52] Zhang, X.; O’Brien, D. J.; Ghosh, S., Parametrically homogenized continuum damage mechanics (phcdm) models for composites from micromechanical analysis, Comput. Methods Appl. Mech. Engrg., 346, 456-485 (2019)
[53] Bigoni, D.; Drugan, W. J., Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials, J. Appl. Mech., 74, 741-753 (2007)
[54] Cecchi, A.; Tralli, A., A homogenized viscoelastic model for masonry structures, Int. J. Solids Struct., 49, 13, 1485-1496 (2012)
[55] Mühlich, U.; Zybell, L.; Kuna, M., Estimation of material properties for linear elastic strain gradient effective media, Eur. J. Mech. A Solids, 31, 1, 117-130 (2012) · Zbl 1278.74145
[56] Bacca, M.; Bigoni, D.; Corso, F. D.; Veber, D., Mindlin second-gradient elastic properties from dilute two-phase cauchy-elastic composites. part i: Closed form expression for the effective higher-order constitutive tensor, Int. J. Solids Struct., 50, 24, 4010-4019 (2013)
[57] Bacca, M.; Bigoni, D.; Corso, F. D.; Veber, D., Mindlin second-gradient elastic properties from dilute two-phase cauchy-elastic composites part ii: Higher-order constitutive properties and application cases, Int. J. Solids Struct., 50, 24, 4020-4029 (2013)
[58] Bacigalupo, A.; Gambarotta, L., A multi-scale strain-localization analysis of a layered strip with debonding interfaces, Int. J. Solids Struct., 50, 13, 2061-2077 (2013)
[59] Baraldi, D.; Cecchi, A.; Tralli, A., Continuous and discrete models for masonry like material: A critical comparative study, Eur. J. Mech. A Solids, 50, 39-58 (2015) · Zbl 1406.74037
[60] Bacigalupo, A.; Paggi, M.; Dal Corso, F.; Bigoni, D., Identification of higher-order continua equivalent to a Cauchy elastic composite, Mech. Res. Commun., 93, 11-22 (2018)
[61] Hütter, G., Homogenization of a cauchy continuum towards a micromorphic continuum, J. Mech. Phys. Solids, 99, 394-408 (2017)
[62] Gałka, A.; Telega, J. J.; Wojnar, R., Some computational aspects of homogenization of thermopiezoelectric composites, Comp. Assist. Mech. Eng. Sci, 3, 2, 133-154 (1996)
[63] Pettermann, H. E.; Suresh, S., A comprehensive unit cell model: a study of coupled effects in piezoelectric 1-3 composites, Int. J. Solids Struct., 37, 39, 5447-5464 (2000) · Zbl 0982.74020
[64] Aboudi, J.; Pindera, M.; Arnold, S., Linear thermoelastic higher-order theory for periodic multiphase materials, J. Appl. Mech., 68, 5, 697-707 (2001) · Zbl 1110.74305
[65] Berger, H.; Kari, S.; Gabbert, U.; Rodríguez-Ramos, R.; Bravo-Castillero, J.; Guinovart-Díaz, R., A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites, Mater. Sci. Eng. A, 412, 1, 53-60 (2005), International Conference on Recent Advances in Composite Materials.
[66] Kanouté, P.; Boso, D.; Chaboche, J.; Schrefler, B., Multiscale methods for composites: a review, Arch. Comput. Methods Eng., 16, 1, 31-75 (2009) · Zbl 1170.74304
[67] Zhang, H.; Zhang, S.; Bi, J.; Schrefler, B., Thermomechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach, Internat. J. Numer. Methods Engrg., 69, 1, 87-113 (2007) · Zbl 1129.74018
[68] Deraemaeker, A.; Nasser, H., Numerical evaluation of the equivalent properties of macro fiber composite (mfc) transducers using periodic homogenization, Int. J. Solids Struct., 47, 24, 3272-3285 (2010) · Zbl 1203.74027
[69] Zah, D.; Miehe, C., Computational homogenization in dissipative electro-mechanics of functional materials, Comput. Methods Appl. Mech. Engrg., 267, 487-510 (2013) · Zbl 1286.74086
[70] Salvadori, A.; Bosco, E.; Grazioli, D., A computational homogenization approach for li-ion battery cells: Part 1 - formulation, J. Mech. Phys. Solids, 65, 114-137 (2014) · Zbl 1323.74063
[71] Bacigalupo, A.; Morini, L.; Piccolroaz, A., Multiscale asymptotic homogenization analysis of thermo-diffusive composite materials, Int. J. Solids Struct., 85-86, 15-33 (2016)
[72] Fantoni, F.; Bacigalupo, A.; Paggi, M., Multi-field asymptotic homogenization of thermo-piezoelectric materials with periodic microstructure, Int. J. Solids Struct., 120, 31-56 (2017)
[73] De Bellis, M. L.; Bacigalupo, A., Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors, Smart Mater. Struct., 26, 8, Article 085037 pp. (2017)
[74] Fantoni, F.; Bacigalupo, A.; Paggi, M., Design of thermo-piezoelectric microstructured bending actuators via multi-field asymptotic homogenization, Int. J. Mech. Sci., 146-147, 319-336 (2018)
[75] Floquet, G., Sur les équations différentielles linéaires à coefficients périodiques, de l’ Ecole Norm. Suprieure, 12, 47-88 (1883) · JFM 15.0279.01
[76] Bloch, F., Uber die quantenmechanik der elektronen in kristallgittern, Z. Phys., 52, 555-600 (1928) · JFM 54.0990.01
[77] Brillouin, L., Wave Propagation and Group Velocity (1960), Academic Press: Academic Press New York · Zbl 0094.41601
[78] Mindlin, R., Equations of high frequency vibrations of thermopiezoelectric crystal plates, Int. J. Solids Struct., 10, 6, 625-637 (1974) · Zbl 0282.73068
[79] Ameen, M.; Peerlings, R.; Geers, M., A quantitative assessment of the scale separation limits of classical and higher-order asymptotic homogenization, Eur. J. Mech. A Solids, 71, 89-100 (2018) · Zbl 1406.74553
[80] Hui, T.; Oskay, C., A high order homogenization model for transient dynamics of heterogeneous media including micro-inertia effects, Comput. Methods Appl. Mech. Engrg., 273, 181-203 (2014) · Zbl 1296.74091
[81] De Domenico, D.; Askes, H., A new multi-scale dispersive gradient elasticity model with micro-inertia: Formulation and -finite element implementation, Internat. J. Numer. Methods Engrg., 108, 5, 485-512 (2016)
[82] Tan, S. H.; Poh, L. H., Homogenized gradient elasticity model for plane wave propagation in bilaminate composites, J. Eng. Mech., 144, 9, Article 04018075 pp. (2018)
[83] Yang, J., An Introduction To the Theory of Piezoelectricity, Vol. 9 (2004), Springer Science & Business Media
[84] Huang, C.; Zhang, Q., Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites, Adv. Funct. Mater., 14, 5, 501-506 (2004)
[85] Wang, D.; Wu, X.; Wang, Z.; Chen, L., Cracking causing cyclic instability of lifepo4 cathode material, J. Power Sources, 140, 1, 125-128 (2005)
[86] Eftekhari, A., Nanostructured Conductive Polymers (2011), John Wiley & Sons
[87] Almadhoun, M. N.; Hedhili, M. N.; Odeh, I. N.; Xavier, P.; Bhansali, U. S.; Alshareef, H. N., Influence of stacking morphology and edge nitrogen doping on the dielectric performance of graphene-polymer nanocomposites, Chem. Mater., 26, 9, 2856-2861 (2014)
[88] Wang, D.; You, F.; Hu, G.-H., Graphene/polymer nanocomposites with high dielectric performance: Interface engineering, (Graphene-Based Polymer Nanocomposites in Electronics (2015), Springer), 49-65
[89] Opoku, C.; Dahiya, A. S.; Oshman, C.; Cayrel, F.; Poulin-Vittrant, G.; Alquier, D.; Camara, N., Fabrication of zno nanowire based piezoelectric generators and related structures, Physics Procedia, 70, 858-862 (2015), Proceedings of the 2015 ICU International Congress on Ultrasonics, Metz, France.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.