×

zbMATH — the first resource for mathematics

A 3D SPH-FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground. (English) Zbl 1441.74064
Summary: A 3D fluid-structure coupling between Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods is proposed in this paper, with its application to complex tire hydroplaning simulations on rough ground. The purpose of this work is to analyze the SPH-FE coupling capabilities for modeling efficiently such a complex phenomenon. On the fluid side, the SPH method is able to handle the three complex interfaces of the hydroplaning phenomenon: free-surface, ground/fluid and fluid/tire interfaces. On the solid side, the FE method is used for its ability to treat tire-ground contact. A new algorithm dedicated to such SPH-FE coupling strategies is proposed to optimize the computational efficiency through the use of differed time steps between fluid and solid solvers. This way, the number of calls to the FE solver is minimized while maintaining the accuracy and stability of the coupling. The ratio between these respective time steps relies on a control procedure based on pressure loading. The present 3D SPH-FE model is first validated with different academic test cases and experimental data before considering the complex problem of the 3D hydroplaning simulations. Hydroplaning simulations are performed and analyzed on 3D configurations involving both smooth and rough grounds.

MSC:
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76N99 Compressible fluids and gas dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bathe, K. J., Finite Element Procedures (1995), Prentice Hall · Zbl 0890.00056
[2] Grogger, H.; Weiss, M., Calculation of the hydroplaning of a deformable smooth-shaped and longitudinally-grooved tire, Tire Sci. Technol., 25, 265-287 (1997)
[3] Cho, J. R.; Lee, H. W.; Sohn, J. S.; Kim, G. J.; Woo, J. S., Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire, Eur. J. Mech. A Solids, 25, 914-926 (2006) · Zbl 1104.74023
[4] Vincent, S.; Sarthou, A.; Caltagirone, J. P.; Sonilhac, F.; Février, P.; Mignot, C.; Pianet, G., Augmented Lagrangian and penalty methods for the simulation of two phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns, J. Comput. Phys., 230, 956-983 (2011) · Zbl 1391.76584
[5] Kumar, S.; Anupam, K.; Scarpas, T.; Kasbergen, C., Study of hydroplaning risk on rolling and sliding passenger car, Proc. Soc. Behav. Sci., 53, 1020-1028 (2012)
[6] Oh, C. W.; Kim, T. W.; Jeong, H. Y.; Park, K. S.; Kim, S. N., Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method, J. Mech. Sci. Technol., 22, 1, 34-40 (2008)
[7] Kim, T. W.; Jeong, H. Y., Hydroplaning simulation for tires using FEM, FDM and an asymptotic method, J. Mech. Sci. Technol., 11, 6, 901-908 (2010)
[9] Okano, T.; Koishi, M., Hydroplaning Simulation using msc.dytran (2001)
[10] Nakajima, Y.; Seta, E.; Kamegawa, T.; Ogawa, H., Hydroplaning analysis by FEM and FVM - effect of tire rolling and tire pattern on hydroplaning, Int. J. Automot. Technol., 1, 1, 26-34 (2000)
[11] Anupam, K., Numerical simulation of vehicle hydroplaning and skid resistance on grooved pavement (2012), National University of Singapore, (Ph.D. thesis)
[13] Zhu, S.; Liu, X.; Cao, Q.; Huang, X., Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient, Adv. Mater. Sci. Eng. (2017)
[14] Li, Z.; Leduc, J.; Nunez-Ramirez, J.; Combescure, A.; Marongiu, J.-C., A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid – structure interaction problems with large interface motion, Comput. Mech., 55, 4, 697-718 (2015) · Zbl 1334.76081
[15] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024 (1977)
[16] Gingold, R. A.; Monaghan, J. J., Smoothed Particle Hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[17] Gotoh, H.; Khayyer, A., On the state-of-the-art of particle methods for coastal and ocean engineering, Coast. Eng. J., 60, 1, 79-103 (2018)
[18] El Gindy, M.; El Sayegh, Z., Sensitivity analysis of truck tyre hydroplaning speed using FEA-SPH model, Int. J. Veh. Syst. Model. Test., 12, 143-161 (2017)
[20] Fourey, G.; Hermange, C.; Oger, G.; Le Touzé, D., An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods, Comput. Phys. Comm. (2017) · Zbl 1411.76130
[21] Khayyer, A.; Tsuruta, N.; Shimizu, Y.; Gotoh, H., Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering, Appl. Ocean Res., 82, 397-414 (2019)
[22] Zhang, Y.; Decheng, W., MPS-FEM coupled method for sloshing flows in an elastic tank, Ocean Eng., 152, 416-427 (2018)
[23] Khayyer, A.; Gotoh, H.; Falahaty, H.; Shimizu, Y., An enhanced isph-sph coupled method for simulation of incompressible fluid-elastic structure interactions, Comput. Phys. Comm., 232, 139-164 (2018)
[24] Hwang, S.-C.; Khayyer, A.; Gotoh, H.; Park, J.-C., Development of a fully lagrangian MPS-based coupled method for simulation of fluid – structure interaction problems, J. Fluids Struct. (2014)
[25] Deuff, J. B., Extrapolation au réel des mesures de pressions obtenues sur des cuves modèle réduit (2007), Ecole Centrale de Nantes, (Ph.D. thesis)
[26] Antoci, C.; Gallati, M.; Sibilla, S., Numérical Simulation of fluid structure interaction by SPH, IOP Comput. Struct., 85, 11-14, 879-890 (2007)
[27] Hermange, C.; Oger, G.; Le Touzé, D., Energy considerations in the SPH method with deformable boundaries and application to FSI problems, J. Comput. Phys. X (2019)
[28] Johnson, G., Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations, Nucl. Eng. Des., 150, 265-274 (1994)
[29] Attaway, S. W.; Heinstein, M. W.; Swegle, J. W., Coupling of Smooth Particle Hydrodynamics with the Finite Element method, Nucl. Eng. Des., 150, 199-205 (1994)
[30] De Vuyst, T., Coupling between meshless and Finite Element methods, Int. J. Impact Eng., 31, 1054-1064 (2005)
[31] Groenenboom, P.; Cartwright, B., Hydrodynamics and fluid – structure interaction by coupled SPH-FE method, J. Hydraul. Res., 48, 61-73 (2010)
[32] Zhang, Z.; Qiang, H.; Gao, W., Coupling of Smoothed Particle Hydrodynamics and Finite Element method for impact dynamics simulation, Eng. Struct., 33, 255-264 (2011)
[33] Caleyron, F.; Chuzel-Marmot, Y.; Combescure, A., Modeling of reinforced concrete trough SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab, Int. J. Numer. Methods Biomed. Eng., 27, 882-898 (2009) · Zbl 1387.74129
[34] Fourey, G., Développement d’une méthode de couplage fluide structure SPH Eléments Finis en vue de son application á l’hydrodynamique navale (2012), Ecole Centrale de Nantes, (Ph.D. thesis)
[35] Yang, Q., SPH Simulation of fluid structure interaction problems with application to hovercraft (2012), Faculty of the Virginia Polytechnic Institute and State University, (Ph.D. thesis)
[36] Michler, C.; Hulshoff, S. J.; Van Brummelen, E. H.; De Borst, R., A monolithic approach to fluid – structure interaction, Comput. & Fluids, 33, 839-848 (2004) · Zbl 1053.76042
[37] Degroote, J.; Bruggeman, P.; Haelterman, R.; Vierendeels, J., Stability of a coupling technique for partitioned solvers in FSI applications, Comput. Struct., 86, 2224-2234 (2008)
[38] Li, Z., Développement d’une méthode de simulation de couplage fluide structure à l’aide de la méthode SPH (2013), Ecole Centrale Lyon, (Ph.D. thesis)
[39] Nunez Ramirez, J.; Marongiu, J.-C.; Brun, M.; Combescure, A., A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps, Int. J. Numer. Methods Eng., 109, 1391-1417 (2016) · Zbl 1378.74025
[40] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial function of minimal degree, Adv. Comput. Math., 4, 389-396 (1995) · Zbl 0838.41014
[41] Vila, J. P., On particle weighted methods and Smooth Particle Hydrodynamics, Math. Models Methods Appl. Sci., 9, 2 (1999) · Zbl 0938.76090
[43] Quinlan, N. J.; Basa, M.; Lastiwka, M., Tuncation errors in mesh-free particle methods, Internat. J. Numer. Methods Engrg., 66, 2064-2085 (2006) · Zbl 1110.76325
[44] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., An improved SPH method: Towards higher order convergence, J. Comput. Phys., 225, 1472-1492 (2007) · Zbl 1118.76050
[45] Libersky, L.; Petschek, A.; Carney, T.; Hipp, J.; Allahdadi, F., High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response, J. Comput. Phys., 109, 67-75 (1993) · Zbl 0791.76065
[46] Colagrossi, A.; Landrini, A., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191, 448-475 (2003) · Zbl 1028.76039
[47] Marongiu, J. C., Méthode numérique lagrangienne pour la simulation d’écoulements à surface libre. Application aux turbines Pelton (2007), Ecole Centrale de Lyon, (Ph.D. thesis)
[48] Marongiu, J.-C.; Leboeuf, F.; Caro, J.; Parkison, A., Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method, J. Hydraul. Res., 48, 40-49 (2010)
[49] De Leffe, M., Modélisation d’écoulements visqueux par méthode SPH en vue d’application à l’hydrodynamique navale (2009), Ecole Centrale Nantes, (Ph.D. thesis)
[50] Bouscasse, B.; Colagrossi, A.; Marrone, S.; Antuono, M., Nonlinear water wave interaction with floating bodies in SPH, J. Fluids Struct., 42, 112-129 (2013)
[51] Marrone, S.; Colagrossi, A.; Antuono, A.; Lugni, C.; Tulin, M. P., A 2D+t SPH model to study the breaking wave pattern generated by fast ships, J. Fluids Struct., 27, 8, 1199-1215 (2011)
[53] Oger, G.; Le Touzé, D.; Guibert, D.; De Leffe, M.; Biddiscombe, J.; Soumagne, J.; Piccinali, J.-G., On distributed memory MPI-based parallelization of SPH codes in massive HPC context, Comput. Phys. Comm., 200, 1-14 (2016)
[55] Farhat, C.; Lesoinne, M., Two efficient staggered algorithms for the serial and parallel solution of three dimensional nonlinear transient aeroelastic problems, Comput. Methods Appl. Mech. Engrg., 182, 499-515 (2000) · Zbl 0991.74069
[56] Marrone, S.; Colagrossi, A.; Antuono, A.; Colicchio, G.; Graziani, G., An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers, J. Comput. Phys., 245, 456-475 (2013) · Zbl 1349.76715
[57] Antoci, C., Simulazione numerica dell’interazione fluido-struttura con la tecnica SPH (2006), Università di Pavia, (Ph.D. thesis)
[58] Li, Z.; Combescure, A.; Leboeuf, F., Coupling of Finite Volume and Finite Element subdomains using different time integrators, Int. J. Numer. Methods Fluids, 72, 1286-1306 (2013)
[59] Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Onate, E., Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM, Comput. Mech., 43, 125-132 (2008) · Zbl 1177.74140
[60] Botia-Vera, E., Experimental and statistical investigation of canonical problems in sloshing (2015), Technical University of Madrid, (Ph.D. thesis)
[61] Barcarolo, D. A.; Oger, G.; Le Touzé, D., Adaptive particle refinement and derefinement applied to Smoothed Particle Hydrodynamics method, J. Comput. Phys., 273, 640-657 (2014) · Zbl 1351.76229
[62] Chiron, L., Couplages et améliorations de la méthode SPH pour traiter des écoulements à multi-échelles temporelles et spatiales (2017), Ecole Centrale de Nantes, (Ph.D. thesis)
[63] Chiron, L.; Oger, G.; De Leffe, M.; Le Touzé, D., Analysis and improvements of adaptive particle refinement (APR) through CPU time, accuracy and robustness considerations, J. Comput. Phys., 354, 552-575 (2017) · Zbl 1380.76117
[64] Monaghan, J. J.; Gingold, R. A., Shock simulation by the particle method SPH, J. Comput. Phys., 52, 374-389 (1983) · Zbl 0572.76059
[65] Yang, Q.; Jones, V.; Mccue, L., Free-surface flow interactions with deformable structures using an SPH-FEM model, Ocean Eng., 55, 136-147 (2012)
[66] Gilbert, J., Accelerating an SPH-FEM solver using heterogeneous computing for use in fluid-structure interaction problems (2015), Virginia Polytechnic Institute and State University, (Ph.D. thesis)
[67] Degroote, J.; Souto-Iglesias, A.; Van Paepegem, W.; Annerel, S.; Bruggeman, P.; Vierendeels, J., Partitioned simulation of the interaction between an elastic structure and free surface flow, Comput. Methods Appl. Mech. Engrg., 199, 2085-2098 (2010) · Zbl 1231.74107
[68] Paik, K. J.; Carrica, P. M., Fluid – structure interaction for an elastic structure interacting with free surface in a rolling tank, Ocean Eng., 84, 201-212 (2014)
[70] Todoroff, V.; Paupy, S.; Biesse, F.; Le Chenadec, Y., The mechanisms involved during the wet braking of new and worn tires, Veh. Syst. Dyn., 1-20 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.