×

zbMATH — the first resource for mathematics

Discussing Hilbert’s 24th problem. (English) Zbl 1441.03006
This is a presentation of the text of Hilbert’s 24th problem, its historical context, the early contributions to it from Hilbert’s own entourage, the problems it raises today, together with brief reviews of the contributions to the special issue of the Philosophical Transactions of the Royal Society devoted to Hilbert’s 24th problem, to which this paper serves as an introduction.
MSC:
03-03 History of mathematical logic and foundations
01A60 History of mathematics in the 20th century
03F03 Proof theory, general (including proof-theoretic semantics)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Thiele R. (2003) Hilbert’s twenty-fourth problem. Am. Math. Mon. 110, 1-24. (doi:10.1080/00029890.2003.11919933) · Zbl 1031.01011
[2] Hilbert D. (1901) Mathematische Probleme. Arch. für Math. Phys., 3. Reihe 1, 44-63, 213-237. · JFM 32.0084.05
[3] Hilbert D. (1935) Gesammelte Abhandlungen, Band III, 2nd edition 1970. Berlin, Germany: Springer. · JFM 61.0022.02
[4] Hilbert D. (1902) Mathematical problems. Bull. Am. Math. Soc. 8, 437-479. · JFM 33.0976.07
[5] Hilbert D. Mathematische Notizbücher. Niedersächsische Staats-und Universitätbibliothek Göttingen, Handschriftenabteilung, Cod. Ms. D. Hilbert 600:1-3.
[6] Kahle R, Oitavem I. (2018) What is Hilbert’s 24th problem? Kairos 20, 1-11. (doi:10.2478/kjps-2018-0001)
[7] Scott CA. (1900) The International Congress of Mathematicians in Paris. Bull. Am. Math. Soc. 7, 57-79. (doi:10.1090/S0002-9904-1900-00768-3) · JFM 31.0034.05
[8] Hilbert D. (1918) Axiomatisches Denken. Math. Ann. 78, 405-415. English translation: [9]. (doi:10.1007/BF01457115) · JFM 46.0062.03
[9] Hilbert D. (1970) Axiomatic thinking. Philos. Math. 7, 7-12. (doi:10.1093/philmat/s1-7.1-2.1) · Zbl 0199.29601
[10] Bernays P. (1967) Hilbert, David. In The encyclopedia of philosophy (ed. P Edwards), pp. 496-505. New York, NY: Macmillan.
[11] MacLane S. (1934) Abgekürzte Beweise im Logikkalkul. Ph.D. thesis, Georg August-Universität zu Göttingen.
[12] MacLane S. (1934) Abbreviated proofs in logic calculus. Bull. Am. Math. Soc. 40, 37-38. Abstract. · JFM 60.0026.10
[13] MacLane S (2005) A mathematical autobiography. Wellesley, MA: A K Peters.
[14] Bundy A, Atiyah M, Macintyre A, Mackenzie D (eds.) (2005) Discussion meeting issue ‘The nature of mathematical proof’. Phil. Trans. R. Soc. A, 363, 2329-2461. · Zbl 1152.03303
[15] Kahle R. (2015) What is a proof? Axiomathes 25, 79-91. (doi:10.1007/s10516-014-9252-9)
[16] Mancosu P. (2008) Mathematical explanation: why it matters. In The philosophy of mathematical practice (ed. P Mancosu), pp. 134-149. Oxford, UK: Oxford University Press.
[17] Kahle R, Schroeder-Heister P. (2006) Proof-theoretic semantics—introduction. Synthese 148, 503-506. (doi:10.1007/s11229-004-6292-5)
[18] Schroeder-Heister P. (2016) Proof-theoretic semantics. In The stanford encyclopedia of philosophy (ed. EN Zalta). Metaphysics Research Lab, Stanford University, winter 2016 edition. · Zbl 1331.03009
[19] Hilbert D. (1897) Theorie der algebraischen Invarianten nebst Anwendungen auf Geometrie. Lecture notes from Summer 1897 prepared by Sophus Marxsen, Library of the Mathematical Institute of the University of Göttingen; English translation Theory of Algebraic Invariants (eds RC Laubenbacher, B Sturmfels) [using a different copy from the Mathematics Library of Cornell University], Cambridge University Press, Cambridge, 1993.
[20] Aigner M, Ziegler GM (2009) Proofs from THE BOOK, 4th edn. Berlin, Germany: Springer.
[21] Inglis M, Aberdein A. (2015) Beauty is not simplicity: an analysis of mathematicians’ proof appraisals. Philos. Math. 23, 87-109. (doi:10.1093/philmat/nku014) · Zbl 1357.00018
[22] Gentzen G. (1969) The present state of research into the foundations of mathematics. In The collected works of Gerhard Gentzen (ed. ME Szabo), Studies in Logic and the Foundations of Mathematics, pp. 234-251. North-Holland. English translation of [23].
[23] Gentzen G. (1938) Die gegenwärtige Lage in der mathematischen Grundlagenforschung. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften Neue Folge 4, 5-18. Also in Deutsche Mathematik, 3:255-268, 1939. English translation [22]. · JFM 64.0931.01
[24] Kahle R. In press. Is there a ‘Hilbert Thesis’? Studia Logica 107. Special Issue on General Proof Theory. Thomas Piecha and Peter Schroeder-Heister (Guest Editors). (doi:10.1007/s11225-017-9776-2) · Zbl 1428.03021
[25] Avigad J. (2006) Mathematical method and proof. Synthese 153, 105-149. (doi:10.1007/s11229-005-4064-5) · Zbl 1116.03012
[26] Avigad J. In press. Modularity in mathematics. Rev. Symb. Logic. (10.1017/S1755020317000387)
[27] Hughes D. (2006) Proofs without syntax. Ann. Math. 143, 1065-1076. (doi:10.4007/annals) · Zbl 1130.03009
[28] Hughes D. (2006) Towards Hilbert’s 24th problem: combinatorial proof invariants: (preliminary version). Electr. Notes Theor. Comput. Sci. 165, 37-63. (doi:10.1016/j.entcs.2006.05.036) · Zbl 1262.03120
[29] Straßburger L. (2005) What is a logic, and what is a proof? In Logica Universalis (ed. JY Beziau), pp. 135-145. Basel, Switzerland: Birkhäuser. · Zbl 1081.03013
[30] Straßburger L. (2006) Proof nets and the identity of proofs. CoRR abs/cs/0610123.
[31] Negri S, von Plato J (2011) Proof analysis – a contribution to Hilbert’s last problem. Cambridge, UK: Cambridge University Press. · Zbl 1247.03001
[32] Loomis ES (1968) The pythagorean proposition. Washington, DC: National Council of Teachers of Mathematics. Reprint of the 2nd edition from 1940. First published in 1927.
[33] Pambuccian V. (1988) Simplicity. Notre Dame J. Form. Logic 29, 396-411. (doi:10.1305/ndjfl/1093637936) · Zbl 0669.03005
[34] Pambuccian V. (2011) The simplest axiom system for plane hyperbolic geometry revisited. Stud. Log. 97, 347-349. (doi:10.1007/s11225-011-9314-6) · Zbl 1234.51011
[35] Alama J. (2014) The simplest axiom system for hyperbolic geometry revisited, again. Stud. Log. 102, 609-615. (doi:10.1007/s11225-013-9509-0) · Zbl 1301.03017
[36] Thiele R, Wos L. (2002) Hilbert’s twenty-fourth problem. J. Automat. Reas. 29, 67-89. (doi:10.1023/A:1020537107897) · Zbl 1016.03061
[37] Wos L, Pieper GW (2003) Automated reasoning and the discovery of missing and elegant proofs. Paramus, NJ: Rinton Press. · Zbl 1058.68102
[38] Bundy A, van Harmelen F, Hesketh J, Smaill A. (1991) Experiments with proof plans for induction. J. Automat. Reason. 7, 303-324. (doi:10.1007/BF00249016) · Zbl 0733.68069
[39] Hilbert D (1910) The foundations of geometry. Chicago, IL: Open Court.
[40] Arana A. (2008) Logical and semantic purity. ProtoSociology 25, 36-48. (doi:10.5840/protosociology2008253) · Zbl 1159.03004
[41] Detlefsen M, Arana A. (2011) Purity of methods. Philosophers’ Imprint 11, 1-20.
[42] Arana A. (2011) L’infinité des nombres premiers : une étude de cas de la pureté des méthodes. Etudes Philos. 97, 193-213. (doi:10.3917/leph.112.0193) · Zbl 1406.03024
[43] Kahle R, Pulcini G. (2018) Towards an operational view of purity. In The logica yearbook 2017 (eds P Arazim, T Lávička). London, UK: College Publications. · Zbl 1418.03018
[44] Arana A. (2017) On the alleged simplicity of impure proof. In Simplicity: ideals of practice in Mathematics and the Arts (eds R Kossak, P Ording), pp. 205-226. Berlin, Germany: Springer. · Zbl 1375.00033
[45] Mancosu P. (2001) Mathematical explanation: problems and prospects. Topoi 20, 97-117. (doi:10.1023/A:1010621314372) · Zbl 1141.00007
[46] Vavilov N. (2019) Reshaping the metaphor of proof. Phil. Trans. R. Soc. A 377, 20180279. (doi:10.1098/rsta.2018.0279)
[47] Pease A, Aberdein A, Martin U. (2019) Explanation in mathematical conversations: an empirical investigation. Phil. Trans. R. Soc. A 377, 20180159. (doi:10.1098/rsta.2018.0159)
[48] Cain AJ. (2019) Visual thinking and simplicity of proof. Phil. Trans. R. Soc. A 377, 20180032. (doi:10.1098/rsta.2018.0032)
[49] Rocha H. (2019) Mathematical proof: from mathematics to school mathematics. Phil. Trans. R. Soc. A 377, 20180045. (doi:10.1098/rsta.2018.0045)
[50] Negri S, von Plato J. (2019) From mathematical axioms to mathematical rules of proof: recent developments in proof analysis. Phil. Trans. R. Soc. A 377, 20180037. (doi:10.1098/rsta.2018.0037)
[51] Straßburger L. (2019) The problem of proof identity, and why computer scientists should care about Hilbert’s 24th problem. Phil. Trans. R. Soc. A 377, 20180038. (doi:10.1098/rsta.2018.0038)
[52] Kinyon M. (2019) Proof simplification and automated theorem proving. Phil. Trans. R. Soc. A 377, 20180034. (doi:10.1098/rsta.2018.0034)
[53] Pambuccian V. (2019) Prolegomena to any theory of proof simplicity. Phil. Trans. R. Soc. A 377, 20180035. (doi:10.1098/rsta.2018.0035)
[54] Sieg W. (2019) The Cantor-Bernstein theorem: how many proofs? Phil. Trans. R. Soc. A 377, 20180031. (doi:10.1098/rsta.2018.0031)
[55] Malheiro A, Reis JF. (2019) Identification of proofs via syzygies. Phil. Trans. R. Soc. A 377, 20180275. (doi:10.1098/rsta.2018.0275)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.