×

Mechanical shape correlation: a novel integrated digital image correlation approach. (English) Zbl 1440.94005

Summary: Mechanical Shape Correlation (MSC) is a novel Integrated Digital Image Correlation (IDIC) based technique used for parameter identification. Digital images taken during an experiment are correlated and coupled to a Finite Element model of the specimen, in order to find the correct parameters in this numerical model. In contrast to regular IDIC techniques, where the images consist of a grayscale speckle pattern applied to the sample, in MSC the images are projections based on the contour lines of the test specimen only. This makes the technique suitable in cases where IDIC cannot be used, e.g., when large deformations and rotations cause parts of the sample to rotate in or out-of-view, or when the speckle pattern degrades due to large or complex deformations, or when application of the pattern is difficult because of small or large specimen dimensions. The method targets problems for which the outline of the specimen is large with respect to the volume of the structure and changes significantly upon deformation. The technique is here applied to virtual experiments with stretchable electronic interconnects, for identification of both elastic and plastic properties. Furthermore, attention is paid to the influence of algorithmic choices and experimental issues. The method reveals good convergence and adequate initial guess robustness. The results are promising and indicate that the method can be used in cases of either large, complex or three-dimensional displacements and rotations on any scale.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hankins, G.; Krajnik, K.; Galedrige, B.; Sakha, S.; Hylton, P.; Otoupal, W., Improving safety structures on sprint and midget race cars (2014)
[2] Drodge, D. R.; Mortimer, B.; Holland, C.; Siviour, C. R., Ballistic impact to access the high-rate behaviour of individual silk fibres, J. Mech. Phys. Solids, 60, 10, 1710-1721 (2012)
[3] Bazhenov, S. L.; Dukhovskii, I. A.; Kovalev, P. I.; Rozhkov, A. N., The fracture of svm aramide fibers upon a high-velocity transverse impact, Polymer Sci., 43, 1, 61-71 (2000)
[4] Riegel, C.; Nowinski, J. L., An experimental investigation of wave propagation in a rubber string impacted by a projectile, Int. J. Non-Linear Mech., 11, 4, 229-237 (1976)
[5] O’Masta, M. R.; Deshpande, V. S.; Wadley, H. N.G., Mechanisms of projectile penetration in \(Dyneema^®\) encapsulated aluminum structures, Int. J. Impact Eng., 74, 16-35 (2014)
[6] A. Savov, S.K. Pakazad, S. Joshi, V. Henneken, R. Dekker, A post processing approach for manufacturing high-density stretchable sensor arrays, in: SENSORS, 2014 IEEE Proceedings, 2014, pp. 1703-1705. http://dx.doi.org/10.1109/ICSENS.2014.6985350; A. Savov, S.K. Pakazad, S. Joshi, V. Henneken, R. Dekker, A post processing approach for manufacturing high-density stretchable sensor arrays, in: SENSORS, 2014 IEEE Proceedings, 2014, pp. 1703-1705. http://dx.doi.org/10.1109/ICSENS.2014.6985350
[7] Shafqat, S.; Hoefnagels, J. P.M.; Savov, A.; Joshi, S.; Dekker, R.; Geers, M. G.D., Ultra-stretchable interconnects for hight-density stretchable electronics, Micromachines, 8, 9, 277 (2017)
[8] Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T.-I.; Chowdhury, R.; Ying, M.; Xu, L.; Li, M.; Chung, H.-J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y.-W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A., Epidermal electronics, Science, 333, 838-843 (2011)
[9] Gutbrod, S. R.; Sulkin, M. S.; Rogers, J. A.; Efimov, I. R., Patient-Specific flexible and stretchable devices for cardiac diagnostics and therapy, Prog. Biophys. Mol. Biol., 115, 244-251 (2014)
[10] Klinker, L.; Lee, S.; Work, J.; Wright, J.; Ma, Y.; Ptaszek, L.; Webb, R. C.; Liu, C.; Sheth, N.; Mansour, M.; Rogers, J. A.; Huang, Y.; Chen, H.; Ghaffari, R., Balloon catheters with integrated stretchable electronics for electrical stimulation, ablation and blood flow monitoring, Extreme Mech. Lett., 3, 45-54 (2015)
[11] Mimoun, B.; Henneken, V.; van der Horst, A.; Dekker, R., Flex-to-Rigid (F2R): A generic platform for the fabrication and assembly of flexible sensors for minimally invasive intstruments, IEEE Sens. J., 13, 10, 3873-3882 (2013)
[12] Hild, F.; Roux, S., Digital image correlation: from displacement measurement to identification of elastic properties - a review, Strain, 42, 69-80 (2006)
[13] Pan, B.; Qian, K.; Xie, H.; Asundi, A., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Meas. Sci. Technol., 20, 6, 062001 (2009)
[14] Cheng, P.; Sutton, M. A.; Schreier, H. W.; McNeill, S. R., Full-field speckle pattern image correlation with B-Spline deformation function, Exp. Mech., 42, 3, 344-352 (2002)
[15] Besnard, G.; Hild, F.; Roux, S., Finite-Element displacement fields analysis from digital images: application to Portevin-Le Châtelier bands, Exp. Mech., 46, 6, 789-803 (2006)
[16] Réthoré, J.; Elguedj, T.; Simon, P.; Coret, M., On the use of NURBS functions for displacement derivatives measurement by digital image correlation, Exp. Mech., 50, 7, 1099-1116 (2010)
[17] Elguedj, T.; Réthoré, J.; Buteri, A., Isogeometric analysis for strain field measurements, Comput. Methods Appl. Mech. Engrg., 200, 1-4, 40-56 (2011) · Zbl 1225.74121
[18] Kleinendorst, S. M.; Hoefnagels, J. P.M.; Verhoosel, C. V.; Ruybalid, A. P., On the use of adaptive refinement in isogeometric digital image correlation, Internat. J. Numer. Methods Engrg., 104, 944-962 (2015) · Zbl 1352.94008
[19] Wittevrongel, L.; Lava, P.; Lomov, S. V.; Debruyne, D., A self adaptive global digital image correlation algorithm, Exp. Mech., 55, 2, 361-378 (2015)
[20] Réthoré, J., A fully integrated noise robust strategy for the identification of constitutive laws from digital images, Internat. J. Numer. Methods Engrg., 84, 6, 631-660 (2010) · Zbl 1202.74210
[21] Neggers, J.; Hoefnagels, J. P.M.; Geers, M. G.D.; Hild, F.; Roux, S., Time-resolved integrated digital image correlation, Internat. J. Numer. Methods Engrg., 103, 3, 157-182 (2015) · Zbl 1352.65147
[22] Luo, P. F.; Chao, Y. J.; Sutton, M. A.; Peters, W. H., Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision, Exp. Mech., 33, 2, 123-132 (1993)
[23] Sutton, M. A.; Orteu, J. J.; Schreier, H. W., Image Correlation for Shape, Motion and Deformation Measurement: Basis Concepts, Theory and Applications (2009), Springer: Springer Berlin, Germany
[24] Han, K.; Ciccotti, M.; Roux, S., Measuring nanoscale stress intensity factors with an atomic force microscope, Europhys. Lett., 89, 6, 66003 (2010)
[25] Kleinendorst, S. M.; Hoefnagels, J. P.M.; Fleerakkers, R. C.; van Maris, M. P.F. H.L.; Cattarinuzzi, E.; Verhoosel, C. V.; Geers, M. G.D., Adaptive isogeometric digital height correlation: application to stretchable electronics, Strain, 52, 4, 336-354 (2016)
[26] François, M. L.M.; Semin, B.; Auradou, H., Identification of the shape of curvilinear beams and fibers, Appl. Mech. Mater., 24-25, 359-364 (2010)
[27] A. Bloch, M. François, J.-C. Thomas, O. Flamand, Monitoring of inflatable structures by using virtual image correlation, in: 7th European Workshop on Structural Health Monitoring, July 8-11, 2014, pp. 686-693.; A. Bloch, M. François, J.-C. Thomas, O. Flamand, Monitoring of inflatable structures by using virtual image correlation, in: 7th European Workshop on Structural Health Monitoring, July 8-11, 2014, pp. 686-693.
[28] Réthoré, J.; François, M., Curve and boundaries measurement using B-splines and virtual images, Optics Lasers Eng., 52, 145-155 (2014)
[29] Carlbom, I.; Paciorek, J., Planar geometric projections and viewing transformations, Comput. Surv., 10, 4, 465-502 (1978) · Zbl 0398.68047
[30] Kleinendorst, S. M.; Hoefnagels, J. P.M.; Geers, M. G.D., Mechanical Shape Correlation: a novel integrated digital image correlation approach, (Advancement of Optical Methods in Experimental Mechanics. Advancement of Optical Methods in Experimental Mechanics, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 3 (2018)), 47-54
[31] Neggers, J.; Blaysat, B.; Hoefnagels, J. P.M.; Geers, M. G.D., On image gradients in digital image correlation, Internat. J. Numer. Methods Engrg., 105, 4, 243-260 (2015)
[32] Besnard, G.; Guérard, S.; Roux, S.; Hild, F., A spacetime approach in digital image correlation: Movie-DIC, Optics Lasers Eng., 49, 1, 71-81 (2011)
[33] Réthoré, J.; Roux, S.; Hild, F., An extended and integrated digital image correlation technique applied to the analysis of fractured samples, Eur. J. Comput. Mech., 18, 3-4, 285-306 (2009) · Zbl 1278.74163
[34] Ruybalid, A. P.; Hoefnagels, J. P.M.; van der Sluis, O.; Geers, M. G.D., Image-based interface characterization with a restricted microscopic field of view, Int. J. Solids Struct., 132-133, 218-231 (2018)
[35] Rokoš, O.; Hoefnagels, J. P.M.; Peerlings, R. H.J.; Geers, M. G.D., On micromechanical parameter identification with integrated dic and the role of accuracy in kinematic boundary conditions, Int. J. Solids Struct., 146, 241-259 (2018)
[36] Kleinendorst, S. M.; Verhaegh, B. J.; Hoefnagels, J. P.M.; Ruybalid, A. P.; van der Sluis, O.; Geers, M. G.D., On the boundary conditions and optimization methods in Integrated Digital Image Correlation, (Advancement of Optical Methods in Experimental Mechanics. Advancement of Optical Methods in Experimental Mechanics, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 3 (2018)), 55-61
[37] Chan, T. F.; Vese, L. A., Active contours without edges, IEEE Trans. Image Process., 10, 2, 266-277 (2001) · Zbl 1039.68779
[38] Vese, L. A.; Chan, T. F., A multiphase level set framework for image segmentation using the Mumford and Shah model, Int. J. Comput. Vis., 50, 3, 271-293 (2002) · Zbl 1012.68782
[39] Blayvas, I.; Bruckstein, A.; Kimmel, R., Efficient computation of adaptive threshold surfaces for image binarization, Pattern Recognit., 39, 1, 89-101 (2006)
[40] Joshi, S.; Savov, A.; Shafqat, S.; Dekker, R., Investigation of fur-like residues post dry etching of polyimide using aluminum hard etch mask, Mater. Sci. Semicond. Process., 75, 130-135 (2018)
[41] Maraghechi, S.; Hoefnagels, J. P.M.; Peerling, R. H.J.; Geers, M. G.D., Correction of scan line shift artifacts in scanning electron microscopy: An extended digital image correlation framework, Ultramicroscopy, 187, 144-163 (2018)
[42] Maraghechi, S.; Hoefnagels, J. P.M.; Peerling, R. H.J.; Rokoš, O.; Geers, M. G.D., Correction of scanning electron microscope imaging artifacts in a novel digital image correlation framework, Exp. Mech. (2018), (submitted for publication)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.