×

Robustness analysis and design of fractional order \(I^\lambda D^\mu \) controllers using the small gain theorem. (English) Zbl 1440.93061

Summary: In this paper, a simple method is proposed to tune the parameters of fractional integral-fractional derivative (FIFE) \(I^\lambda D^\mu\) controllers based on the Bode diagram. The proposed technique provides a practical approach for tuning FIFE controllers to compensate stable plants. Using the small gain theorem and based on the sensitivity functions analysis, it is proved that by applying the designed FIFE controller the robustness of the compensated system in the presence of plant uncertainties is improved in comparison to the PI controller in a similar structure. Moreover, the closed-loop phase margin and gain crossover frequency are adjustable by tuning the free controller parameters. Simulation results are presented to demonstrate the simplicity of application and effectiveness of the tuned controller.

MSC:

93B35 Sensitivity (robustness)
93C15 Control/observation systems governed by ordinary differential equations
26A33 Fractional derivatives and integrals
93C41 Control/observation systems with incomplete information
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahn, H. S.; Bhambhani, V.; Chen, Y., Fractional-order integral and derivative controller for temperature profile tracking, Sadhana, 34, 5, 833-850 (2009) · Zbl 1186.93029 · doi:10.1007/s12046-009-0049-2
[2] Azarmi, R., Sedigh, A. K., Tavakoli-Kakhki, M., & Fatehi, A. (2015). Design and implementation of Smith predictor based fractional order PID controller on MIMO flow-level plant. Proceedings of the 23rd Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran (pp. 858-863).
[3] Azarmi, R.; Tavakoli-Kakhki, M.; Sedigh, A. K.; Fatehi, A., Analytical design of fractional order PID controllers based on the fractional set-point weighted structure: Case study in twin rotor helicopter, Mechatronics, 31, 222-233 (2015) · doi:10.1016/j.mechatronics.2015.08.008
[4] Azarmi, R.; Tavakoli-Kakhki, M.; Sedigh, A. K.; Fatehi, A., Robust fractional order PI controller tuning based on Bode’s ideal transfer function, IFAC-PapersOnLine, 49, 9, 158-163 (2016) · doi:10.1016/j.ifacol.2016.07.519
[5] Badri, V.; Tavazoei, M. S., Achievable performance region for a fractional-order proportional and derivative motion controller, IEEE Transactions on Industrial Electronics, 62, 11, 7171-7180 (2015) · doi:10.1109/TIE.2015.2448691
[6] Badri, V.; Tavazoei, M. S., Fractional order control of thermal systems: Achievability of frequency-domain requirements, Nonlinear Dynamics, 80, 4, 1773-1783 (2015) · doi:10.1007/s11071-014-1394-1
[7] Badri, V.; Tavazoei, M. S., Some analytical results on tuning fractional-order [proportional-integral] controllers for fractional-order systems, IEEE Transactions on Control Systems Technology, 24, 3, 1059-1066 (2016) · doi:10.1109/TCST.2015.2462739
[8] Basiri, M. H.; Tavazoei, M. S., On robust control of fractional order plants: Invariant phase margin, Journal of Computational and Nonlinear Dynamics, 10, 5, 1-5 (2015)
[9] Beschi, M.; Padula, F.; Visioli, A., The generalised isodamping approach for robust fractional PID controllers design, International Journal of Control, 90, 6, 1157-1164 (2017) · Zbl 1367.93158 · doi:10.1080/00207179.2015.1099076
[10] Bishop, R. H., The mechatronics handbook (2002), Boca Raton, FL: CRC Press, Boca Raton, FL
[11] Castillo, F. J.; Feliu, V.; Rivas, R.; Sánchez, L., Design of a class of fractional controllers from frequency specifications with guaranteed time domain behavior, Computers and Mathematics with Applications, 59, 5, 1656-1666 (2010) · Zbl 1189.93045 · doi:10.1016/j.camwa.2009.08.007
[12] Debbarma, S.; Saikia, L. C.; Sinha, N., Solution to automatic generation control problem using firefly algorithm optimized \(####\) controller, ISA Transactions, 53, 2, 358-366 (2014) · doi:10.1016/j.isatra.2013.09.019
[13] Dimeas, I.; Petras, I.; Psychalinos, C., New analog implementation technique for fractional-order controller: A DC motor control, AEU-International Journal of Electronics and Communications, 78, 192-200 (2017) · doi:10.1016/j.aeue.2017.03.010
[14] Feliu-Batlle, V., Robust isophase margin control of oscillatory systems with large uncertainties in their parameters: A fractional-order control approach, International Journal of Robust and Nonlinear Control, 27, 12, 2145-2164 (2017) · Zbl 1370.93095 · doi:10.1002/rnc.3677
[15] Feliu-Batlle, V.; Castillo-García, F. J., On the robust control of stable minimum phase plants with large uncertainty in a time constant. A fractional-order control approach, Automatica, 50, 1, 218-224 (2014) · Zbl 1298.93133 · doi:10.1016/j.automatica.2013.10.002
[16] Gao, Z.; Yan, M.; Wei, J., Robust stabilizing regions of fractional-order \(####\) controllers of time-delay fractional-order systems, Journal of Process Control, 24, 1, 37-47 (2014) · doi:10.1016/j.jprocont.2013.10.008
[17] Hosseinnia, S. H.; Tejado, I.; Vinagre, B. M., Stability of fractional order switching systems, Computers and Mathematics with Applications, 66, 5, 585-596 (2013) · Zbl 1348.34015 · doi:10.1016/j.camwa.2013.05.005
[18] Jesus, I. S.; Machado, J. T., Fractional control with a Smith predictor, Journal of Computational and Nonlinear Dynamics, 6, 3, 1-10 (2011) · doi:10.1115/1.4002834
[19] Jin, Y.; Chen, Y. Q.; Xue, D., Time-constant robust analysis of a fractional order [proportional derivative] controller, IET Control Theory and Applications, 5, 1, 164-172 (2011) · doi:10.1049/iet-cta.2009.0543
[20] Lan, Y. H.; Zhou, Y., Non-fragile observer-based robust control for a class of fractional-order nonlinear systems, Systems and Control Letters, 62, 12, 1143-1150 (2013) · Zbl 1282.93095 · doi:10.1016/j.sysconle.2013.09.007
[21] Li, D.; Liu, L.; Jin, Q.; Hirasawa, K., Maximum sensitivity based fractional IMC-PID controller design for non-integer order system with time delay, Journal of Process Control, 31, 17-29 (2015) · doi:10.1016/j.jprocont.2015.04.001
[22] Li, H.; Luo, Y.; Chen, Y., A fractional order proportional and derivative (FOPD) motion controller: Tuning rules and experiments, IEEE Transactions on Control Systems Technology, 18, 2, 516-520 (2010) · doi:10.1109/TCST.2009.2019120
[23] Liang, T.; Chen, J.; Zhao, H., Robust stability region of fractional order \(####\) controller for fractional order interval plant, International Journal of Systems Science, 44, 9, 1762-1773 (2013) · Zbl 1277.93063 · doi:10.1080/00207721.2012.670291
[24] Luo, Y.; Chen, Y., Fractional order [proportional derivative] controller for a class of fractional order systems, Automatica, 45, 10, 2446-2450 (2009) · Zbl 1183.93053 · doi:10.1016/j.automatica.2009.06.022
[25] Luo, Y.; Chen, Y., Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems, Automatica, 48, 9, 2159-2167 (2012) · Zbl 1257.93039 · doi:10.1016/j.automatica.2012.05.072
[26] Luo, Y.; Chen, Y.; Pi, Y., Experimental study of fractional order proportional derivative controller synthesis for fractional order systems, Mechatronics, 21, 1, 204-214 (2011) · doi:10.1016/j.mechatronics.2010.10.004
[27] Luo, Y.; Chen, Y. Q.; Wang, C. Y.; Pi, Y. G., Tuning fractional order proportional integral controllers for fractional order systems, Journal of Process Control, 20, 7, 823-831 (2010) · doi:10.1016/j.jprocont.2010.04.011
[28] Malti, R., A note on \(####\)-norms of fractional systems, Automatica, 49, 9, 2923-2927 (2013) · Zbl 1364.93299 · doi:10.1016/j.automatica.2013.06.002
[29] Malti, R.; Aoun, M.; Levron, F.; Oustaloup, A., Analytical computation of the \(####\)-norm of fractional commensurate transfer functions, Automatica, 47, 11, 2425-2432 (2011) · Zbl 1228.93064 · doi:10.1016/j.automatica.2011.08.021
[30] Matignon, D. (1996). Stability results for fractional differential equations with applications to control processing. Proceedings of IMACS-SMC, Lille, France (pp. 963-968).
[31] Mesbahi, A.; Haeri, M., Robust non-fragile fractional order PID controller for linear time invariant fractional delay systems, Journal of Process Control, 24, 9, 1489-1494 (2014) · doi:10.1016/j.jprocont.2014.07.001
[32] Monje, C. A.; Calderon, A. J.; Vinagre, B. M.; Chen, Y.; Feliu, V., On fractional \(####\) controllers: Some tuning rules for robustness to plant uncertainties, Nonlinear Dynamics, 38, 1-4, 369-381 (2004) · Zbl 1134.93338 · doi:10.1007/s11071-004-3767-3
[33] Monje, C. A.; Vinagre, B. M.; Feliu, V.; Chen, Y., Tuning and auto-tuning of fractional order controllers for industry applications, Control Engineering Practice, 16, 7, 798-812 (2008) · doi:10.1016/j.conengprac.2007.08.006
[34] Morari, M.; Zafiriou, E., Robust process control, 488 (1989), Englewood Cliffs, NJ: Prentice Hall, Englewood Cliffs, NJ
[35] Muresan, C. I.; Dutta, A.; Dulf, E. H.; Pinar, Z.; Maxim, A.; Ionescu, C. M., Tuning algorithms for fractional order internal model controllers for time delay processes, International Journal of Control, 89, 3, 579-593 (2016) · Zbl 1332.93130 · doi:10.1080/00207179.2015.1086027
[36] Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F. M., Frequency-band complex noninteger differentiator: Characterization and synthesis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47, 1, 25-39 (2000) · doi:10.1109/81.817385
[37] Padula, F.; Alcántara, S.; Vilanova, R.; Visioli, A., \(####\) control of fractional linear systems, Automatica, 49, 7, 2276-2280 (2013) · Zbl 1364.93222 · doi:10.1016/j.automatica.2013.04.012
[38] Padula, F.; Vilanova, R.; Visioli, A., \(####\) optimization-based fractional-order PID controllers design, International Journal of Robust and Nonlinear Control, 24, 17, 3009-3026 (2014) · Zbl 1305.93067 · doi:10.1002/rnc.3041
[39] Padula, F.; Visioli, A., Tuning rules for optimal PID and fractional-order PID controllers, Journal of Process Control, 21, 1, 69-81 (2011) · doi:10.1016/j.jprocont.2010.10.006
[40] Padula, F.; Visioli, A., Set-point weight tuning rules for fractional-order PID controllers, Asian Journal of Control, 15, 3, 678-690 (2013) · Zbl 1327.93188 · doi:10.1002/asjc.634
[41] Padula, F.; Visioli, A., On the fragility of fractional-order PID controllers for FOPDT processes, ISA Transactions, 60, 228-243 (2016) · doi:10.1016/j.isatra.2015.11.010
[42] Petras, I., Fractional-order feedback control of a DC motor, Journal of Electrical Engineering, 60, 3, 117-128 (2009)
[43] Podlubny, I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations to methods of their solution and some of their applications, 198 (1998), San Diego, CA: Academic Press, San Diego, CA · Zbl 0922.45001
[44] Podlubny, I., Fractional-order systems and \(####\) controllers, IEEE Transactions on Automatic Control, 44, 1, 208-214 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[45] Rasouli, H.; Fatehi, A., Design of set-point weighting \(####\) controller for vertical magnetic flux controller in Damavand tokamak, Review of Scientific Instruments, 85, 12, 1-13 (2014) · doi:10.1063/1.4904737
[46] Rasouli, H.; Fatehi, A.; Zamanian, H., Design and implementation of fractional order pole placement controller to control the magnetic flux in Damavand tokamak, Review of Scientific Instruments, 86, 3, 1-11 (2015) · doi:10.1063/1.4913787
[47] Tabatabaei, M.; Haeri, M., Characteristic ratio assignment in fractional order systems, ISA Transactions, 49, 4, 470-478 (2010) · doi:10.1016/j.isatra.2010.06.001
[48] Tavazoei, M. S.; Tavakoli-Kakhki, M., Compensation by fractional-order phase-lead/lag compensators, IET Control Theory and Applications, 8, 5, 319-329 (2014) · doi:10.1049/iet-cta.2013.0138
[49] Tavakoli-Kakhki, M.; Haeri, M., Fractional order model reduction approach based on retention of the dominant dynamics: Application in IMC based tuning of FOPI and FOPID controllers, ISA Transactions, 50, 3, 432-442 (2011) · doi:10.1016/j.isatra.2011.02.002
[50] Tavakoli-Kakhki, M.; Haeri, M., Temperature control of a cutting process using fractional order proportional-integral-derivative controller, Journal of Dynamic Systems, Measurement, and Control, 133, 5, 1-10 (2011) · doi:10.1115/1.4004059
[51] Wang, D. J.; Gao, X. L., \(####\) design with fractional-order \(####\) controllers, Automatica, 48, 5, 974-977 (2012) · Zbl 1246.93040 · doi:10.1016/j.automatica.2012.02.012
[52] Yaniv, O.; Nagurka, M., Design of PID controllers satisfying gain margin and sensitivity constraints on a set of plants, Automatica, 40, 1, 111-116 (2004) · Zbl 1035.93032 · doi:10.1016/j.automatica.2003.08.005
[53] Yeroglu, C.; Tan, N., Note on fractional-order proportional-integral-differential controller design, IET Control Theory and Applications, 5, 17, 1978-1989 (2011) · doi:10.1049/iet-cta.2010.0746
[54] Zhou, K.; Doyle, J. C., Essentials of robust control, 104 (1998), Upper Saddle River, NJ: Prentice Hall, Upper Saddle River, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.