×

zbMATH — the first resource for mathematics

A novel solver for simulation of flows from continuum regime to rarefied regime at moderate Knudsen number. (English) Zbl 1440.76138
Summary: A novel and simple solver for simulation of flows from continuum regime to rarefied regime at moderate Knudsen number is developed in this work. The present solver combines good features of gas kinetic flux solver (GKFS), discrete velocity method (DVM) and the moment method. Like the GKFS, in the present solver, the macroscopic governing equations are discretized by finite volume method and the numerical fluxes at cell interfaces are evaluated by the local solution of Boltzmann equation. To get the local solution of Boltzmann equation, the initial distribution function is reconstructed with the help of Grad’s distribution function, which is inspired from the moment method. For the high order moments in Grad’s distribution function, they are computed directly by the moments of distribution function, which is inspired from DVM. In principle, the present solver only needs to discretize the physical space and solves the governing equations resulted from conservation laws of mass, momentum and energy. Thus, its governing equations are much simpler than those of the moment method. To validate the proposed solver, some test examples covering continuum regime and rarefied regime are simulated. Numerical results showed that the present solver can give accurate prediction in the continuum regime and reasonable results as the traditional moment method in the rarefied regime at moderate Knudsen number.
MSC:
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics
35Q20 Boltzmann equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Struchtrup, H., Macroscopic transport equations for rarefied gas flows, (Macroscopic Transport Equations for Rarefied Gas Flows (2005), Springer) · Zbl 1119.76002
[2] Ohwada, T.; Sone, Y.; Aoki, K., Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules, Phys. Fluids A, Fluid Dyn., 1, 12, 2042-2049 (1989) · Zbl 0696.76092
[3] Sone, Y.; Ohwada, T.; Aoki, K., Temperature jump and Knudsen layer in a rarefied gas over a plane wall: numerical analysis of the linearized Boltzmann equation for hard-sphere molecules, Phys. Fluids A, Fluid Dyn., 1, 2, 363-370 (1989) · Zbl 0661.76082
[4] Steckelmacher, W., Knudsen flow 75 years on: the current state of the art for flow of rarefied gases in tubes and systems, Rep. Prog. Phys., 49, 10, 1083 (1986)
[5] Liu, W.; Tang, G.; Su, W.; Wu, L.; Zhang, Y., Rarefaction throttling effect: influence of the bend in micro-channel gaseous flow, Phys. Fluids, 30, 8, Article 082002 pp. (2018)
[6] Takaishi, T.; Sensui, Y., Thermal transpiration effect of hydrogen, rare gases and methane, Trans. Faraday Soc., 59, 2503-2514 (1963)
[7] Chen, S.; Xu, K.; Lee, C.; Cai, Q., A unified gas kinetic scheme with moving mesh and velocity space adaptation, J. Comput. Phys., 231, 20, 6643-6664 (2012)
[8] Li, Z-H.; Zhang, H-X., Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry, J. Comput. Phys., 228, 4, 1116-1138 (2009) · Zbl 1330.76094
[9] Huang, J-C.; Xu, K.; Yu, P., A unified gas-kinetic scheme for continuum and rarefied flows III: microflow simulations, Commun. Comput. Phys., 14, 5, 1147-1173 (2013) · Zbl 1373.76217
[10] Fan, J.; Shen, C., Statistical simulation of low-speed rarefied gas flows, J. Comput. Phys., 167, 2, 393-412 (2001) · Zbl 1052.76055
[11] Varoutis, S.; Valougeorgis, D.; Sazhin, O.; Sharipov, F., Rarefied gas flow through short tubes into vacuum, J. Vac. Sci. Technol., A, Vac. Surf. Films, 26, 2, 228-238 (2008)
[12] Bird, G. A.; Brady, J., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (1994), Clarendon Press: Clarendon Press Oxford
[13] Robinson, C.; Harvey, J., Adaptive domain decomposition for unstructured meshes applied to the direct simulation Monte Carlo method, (Parallel Computational Fluid Dynamics 1996 (1997), Elsevier), 469-476
[14] Mohammadzadeh, A.; Roohi, E.; Niazmand, H., A parallel DSMC investigation of monatomic/diatomic gas flows in a micro/nano cavity, Numer. Heat Transf. Appl., 63, 4, 305-325 (2013)
[15] Yang, J.; Huang, J., Rarefied flow computations using nonlinear model Boltzmann equations, J. Comput. Phys., 120, 2, 323-339 (1995) · Zbl 0845.76064
[16] Kinetic-Theoretic, Chu C., Description of shock wave formation. II, Phys. Fluids, 8, 8, 1450-1455 (1965)
[17] Li, Z-H.; Zhang, H-X., Study on gas kinetic unified algorithm for flows from rarefied transition to continuum, J. Comput. Phys., 193, 2, 708-738 (2004) · Zbl 1109.76349
[18] Li, Z-H.; Zhang, H-X., Gas-kinetic description of shock wave structures by solving Boltzmann model equation, Int. J. Comput. Fluid Dyn., 22, 9, 623-638 (2008) · Zbl 1184.76840
[19] Mieussens, L., Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput. Phys., 162, 2, 429-466 (2000) · Zbl 0984.76070
[20] Yang, L.; Shu, C.; Wu, J.; Wang, Y., Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes, J. Comput. Phys., 306, 291-310 (2016) · Zbl 1351.76271
[21] Xu, K.; Huang, J-C., A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys., 229, 20, 7747-7764 (2010) · Zbl 1276.76057
[22] Huang, J-C.; Xu, K.; Yu, P., A unified gas-kinetic scheme for continuum and rarefied flows II: multi-dimensional cases, Commun. Comput. Phys., 12, 3, 662-690 (2012) · Zbl 1373.76216
[23] Guo, Z.; Xu, K.; Wang, R., Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case, Phys. Rev. E, 88, 3, Article 033305 pp. (2013)
[24] Guo, Z.; Wang, R.; Xu, K., Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case, Phys. Rev. A, 91, 3, Article 033313 pp. (2015)
[25] Wang, P.; Ho, M. T.; Wu, L.; Guo, Z.; Zhang, Y., A comparative study of discrete velocity methods for low-speed rarefied gas flows, Comput. Fluids, 161, 33-46 (2018) · Zbl 1390.76817
[26] Struchtrup, H.; Torrilhon, M., Higher-order effects in rarefied channel flows, Phys. Rev. A, 78, 4, Article 046301 pp. (2008)
[27] X-j, Gu; Emerson, D. R., A high-order moment approach for capturing non-equilibrium phenomena in the transition regime, J. Fluid Mech., 636, 177-216 (2009) · Zbl 1183.76850
[28] Gu, X.; Emerson, D., A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions, J. Comput. Phys., 225, 1, 263-283 (2007) · Zbl 1201.76127
[29] Rana, A.; Torrilhon, M.; Struchtrup, H., A robust numerical method for the R13 equations of rarefied gas dynamics: application to lid driven cavity, J. Comput. Phys., 236, 169-186 (2013) · Zbl 1286.76130
[30] Mizzi, S.; Gu, X.; Emerson, D.; Barber, R. W.; Reese, J., Computational framework for the regularized 20-moment equations for non-equilibrium gas flows, Int. J. Numer. Methods Fluids, 56, 8, 1433-1439 (2008) · Zbl 1148.76043
[31] Struchtrup, H., Heat transfer in the transition regime: solution of boundary value problems for Grad’s moment equations via kinetic schemes, Phys. Rev. A, 65, 4, Article 041204 pp. (2002)
[32] Torrilhon, M.; Struchtrup, H., Boundary conditions for regularized 13-moment-equations for micro-channel-flows, J. Comput. Phys., 227, 3, 1982-2011 (2008) · Zbl 1132.76049
[33] Struchtrup, H.; Beckmann, A.; Rana, A. S.; Frezzotti, A., Evaporation boundary conditions for the R13 equations of rarefied gas dynamics, Phys. Fluids, 29, 9, Article 092004 pp. (2017)
[34] Gu, X-J.; Zhang, H.; Emerson, D. R., A new extended Reynolds equation for gas bearing lubrication based on the method of moments, Microfluid. Nanofluid., 20, 1, 23 (2016)
[35] Gu, X-J.; Emerson, D. R.; Tang, G-H., Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations, Phys. Rev. A, 81, 1, Article 016313 pp. (2010)
[36] Gu, X-J.; Emerson, D. R., Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas, Phys. Rev. A, 89, 6, Article 063020 pp. (2014)
[37] Rana, A. S.; Mohammadzadeh, A.; Struchtrup, H., A numerical study of the heat transfer through a rarefied gas confined in a microcavity, Contin. Mech. Thermodyn., 27, 3, 433-446 (2015) · Zbl 1341.76021
[38] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 4, 331-407 (1949) · Zbl 0037.13104
[39] Yang, L.; Shu, C.; Wu, J., A simple distribution function-based gas-kinetic scheme for simulation of viscous incompressible and compressible flows, J. Comput. Phys., 274, 611-632 (2014) · Zbl 1351.76257
[40] Yang, L.; Shu, C.; Wu, J., A three-dimensional explicit sphere function-based gas-kinetic flux solver for simulation of inviscid compressible flows, J. Comput. Phys., 295, 322-339 (2015) · Zbl 1349.76751
[41] Sun, Y.; Shu, C.; Teo, C.; Wang, Y.; Yang, L., Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows, J. Comput. Phys., 300, 492-519 (2015) · Zbl 1349.76392
[42] Yang, L.; Shu, C.; Wang, Y.; Sun, Y., Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows, J. Comput. Phys., 319, 129-144 (2016) · Zbl 1349.76750
[43] Yang, L.; Shu, C.; Wang, Y., Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows, Phys. Rev. A, 93, 3, Article 033311 pp. (2016)
[44] Yang, L.; Shu, C.; Wu, J.; Wang, Y.; Sun, Y., Comparative study of 1D, 2D and 3D simplified gas kinetic schemes for simulation of inviscid compressible flows, Appl. Math. Model., 43, 85-109 (2017) · Zbl 1446.76057
[45] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511 (1954) · Zbl 0055.23609
[46] Golub, G. H.; Welsch, J. H., Calculation of Gauss quadrature rules, Math. Comput., 23, 106, 221-230 (1969) · Zbl 0179.21901
[47] Shizgal, B., A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems, J. Comput. Phys., 41, 2, 309-328 (1981) · Zbl 0459.65096
[48] Cercignani, C.; Lampis, M., Kinetic models for gas-surface interactions, Transp. Theory Stat. Phys., 1, 2, 101-114 (1971) · Zbl 0288.76041
[49] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[50] Ghia, U.; Ghia, K. N.; Shin, C., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[51] Weiss, W., Continuous shock structure in extended thermodynamics, Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 52, 6 (1995), R5760-R3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.