×

zbMATH — the first resource for mathematics

Skew-symmetric Nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact. (English) Zbl 1440.74403
Summary: A simple skew-symmetric Nitsche’s formulation is introduced into the framework of isogeometric analysis (IGA) to deal with various problems in small strain elasticity: essential boundary conditions, symmetry conditions for Kirchhoff plates, patch coupling in statics and in modal analysis as well as Signorini contact conditions. For linear boundary or interface conditions, the skew-symmetric formulation is parameter-free. For contact conditions, it remains stable and accurate for a wide range of the stabilization parameter. Several numerical tests are performed to illustrate its accuracy, stability and convergence performance. We investigate particularly the effects introduced by Nitsche’s coupling, including the convergence performance and condition numbers in statics as well as the extra “outlier” frequencies and corresponding eigenmodes in structural dynamics. We present the Hertz test, the block test, and a 3D self-contact example showing that the skew-symmetric Nitsche’s formulation is a suitable approach to simulate contact problems in IGA.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74M15 Contact in solid mechanics
Software:
G+Smo
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[2] Beirão da Veiga, L.; Buffa, A.; Sangalli, G.; Vázquez, R., Mathematical analysis of variational isogeometric methods, Acta Numer., 23, 157-287 (2014) · Zbl 1398.65287
[3] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.; Rabczuk, T., Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015)
[4] Simpson, R. N.; Bordas, S. P.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209, 87-100 (2012) · Zbl 1243.74193
[5] Simpson, R.; Bordas, S.; Lian, H.; Trevelyan, J., An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Struct., 118, 2-12 (2013)
[6] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.; Hughes, T. J.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221 (2013) · Zbl 1297.74156
[7] Lian, H.; Simpson, R. N.; Bordas, S., Stress analysis without meshing: Isogeometric boundary-element method, Proc. Inst. Civ. Eng.: Eng. Comput. Mech., 166, 2, 88-99 (2013)
[8] Beer, G.; Marussig, B.; Duenser, C., Isogeometric boundary element method for the simulation of underground excavations, Geotech. Lett., 3, 3, 108-111 (2013)
[9] Marussig, B.; Zechner, J.; Beer, G.; Fries, T.-P., Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Mech. Engrg., 284, 458-488 (2015) · Zbl 1423.74101
[10] Lian, H.; Kerfriden, P.; Bordas, S., Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity, Internat. J. Numer. Methods Engrg., 106, 12, 972-1017 (2016) · Zbl 1352.74467
[11] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S., Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Engrg., 316, 151-185 (2017)
[12] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput. Methods Appl. Mech. Engrg., 200, 23, 2021-2031 (2011) · Zbl 1228.65232
[13] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis, Comput. Aided Des., 45, 4, 812-821 (2013)
[14] Kiendl, J.; Bletzinger, K.-U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49, 3902-3914 (2009) · Zbl 1231.74422
[15] Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5, 276-289 (2010) · Zbl 1227.74107
[16] Benson, D.; Bazilevs, Y.; Hsu, M.-C.; Hughes, T., A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 13, 1367-1378 (2011) · Zbl 1228.74077
[17] Echter, R.; Oesterle, B.; Bischoff, M., A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170-180 (2013) · Zbl 1297.74071
[19] Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math. Comput. Simulation, 79, 3, 763-813 (2008) · Zbl 1152.74055
[20] Dunant, C.; Vinh, P. N.; Belgasmia, M.; Bordas, S.; Guidoum, A., Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software, Eur. J. Comput. Mech./Rev. Eur. Méc. Numér., 16, 2, 237-258 (2007) · Zbl 1208.74146
[21] Harari, I.; Dolbow, J., Analysis of an efficient finite element method for embedded interface problems, Comput. Mech., 46, 1, 205-211 (2010) · Zbl 1190.65172
[22] Babuška, I., The finite element method with penalty, Math. Comp., 27, 122, 221-228 (1973) · Zbl 0299.65057
[23] Kikuchi, N.; Oden, J. T., (Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics, vol. 8 (1988), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA), xiv+495 · Zbl 0685.73002
[24] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192 (1973) · Zbl 0258.65108
[25] Bernardi, C.; Maday, Y.; Patera, A. T., Domain decomposition by the mortar element method, (Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters. Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, (Beaune, 1992). Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters. Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, (Beaune, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 384 (1993), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 269-286 · Zbl 0799.65124
[26] Bernardi, C.; Maday, Y.; Patera, A. T., A new nonconforming approach to domain decomposition: the mortar element method, (Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. XI. Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. XI, (Paris, 1989-1991). Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. XI. Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. XI, (Paris, 1989-1991), Pitman Res. Notes Math. Ser., vol. 299 (1994), Longman Sci. Tech.: Longman Sci. Tech. Harlow), 13-51 · Zbl 0797.65094
[27] Ben Belgacem, F., The mortar finite element method with Lagrange multipliers, Numer. Math., 84, 2, 173-197 (1999) · Zbl 0944.65114
[28] Wohlmuth, B. I., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 3, 989-1012 (2000) · Zbl 0974.65105
[29] Brivadis, E.; Buffa, A.; Wohlmuth, B.; Wunderlich, L., Isogeometric mortar methods, Comput. Methods Appl. Mech. Engrg., 284, 292-319 (2015) · Zbl 1425.65150
[30] Temizer, I.; Wriggers, P.; Hughes, T., Contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 200, 9, 1100-1112 (2011) · Zbl 1225.74126
[31] Temizer, I.; Wriggers, P.; Hughes, T., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 209, 115-128 (2012) · Zbl 1243.74130
[32] De Lorenzis, L.; Wriggers, P.; Zavarise, G., A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented lagrangian method, Comput. Mech., 49, 1, 1-20 (2012) · Zbl 1356.74146
[33] Kim, J.-Y.; Youn, S.-K., Isogeometric contact analysis using mortar method, Internat. J. Numer. Methods Engrg., 89, 12, 1559-1581 (2012) · Zbl 1242.74131
[34] Seitz, A.; Farah, P.; Kremheller, J.; Wohlmuth, B. I.; Wall, W. A.; Popp, A., Isogeometric dual mortar methods for computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 301, 259-280 (2016) · Zbl 1425.74490
[36] Nitsche, J., Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36, 9-15 (1971) · Zbl 0229.65079
[37] Stenberg, R., On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math., 63, 1-3, 139-148 (1995) · Zbl 0856.65130
[38] Becker, R.; Hansbo, P.; Stenberg, R., A finite element method for domain decomposition with non-matching grids, ESAIM Math. Model. Numer. Anal., 37, 2, 209-225 (2003) · Zbl 1047.65099
[39] Hansbo, P., Nitsche’s method for interface problems in computational mechanics, GAMM-Mitt., 28, 2, 183-206 (2005) · Zbl 1179.65147
[40] Annavarapu, C.; Hautefeuille, M.; Dolbow, J. E., A robust Nitsches formulation for interface problems, Comput. Methods Appl. Mech. Engrg., 225, 44-54 (2012) · Zbl 1253.74096
[41] Embar, A.; Dolbow, J.; Harari, I., Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements, Internat. J. Numer. Methods Engrg., 83, 7, 877-898 (2010) · Zbl 1197.74178
[42] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 6, 1163-1182 (2014) · Zbl 1398.74379
[43] Apostolatos, A.; Schmidt, R.; Wüchner, R.; Bletzinger, K.-U., A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis, Internat. J. Numer. Methods Engrg., 97, 7, 473-504 (2014) · Zbl 1352.74315
[44] Ruess, M.; Schillinger, D.; Özcan, A. I.; Rank, E., Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269, 46-71 (2014) · Zbl 1296.74013
[45] Guo, Y.; Ruess, M., Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures, Comput. Methods Appl. Mech. Engrg., 284, 881-905 (2015) · Zbl 1423.74573
[46] Du, X.; Zhao, G.; Wang, W., Nitsche method for isogeometric analysis of Reissner-Mindlin plate with non-conforming multi-patches, Comput. Aided Geom. Design, 35/36, 121-136 (2015) · Zbl 1417.74020
[47] Hansbo, P.; Larson, M. G., Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg., 191, 17-18, 1895-1908 (2002) · Zbl 1098.74693
[48] Jiang, W.; Annavarapu, C.; Dolbow, J. E.; Harari, I., A robust Nitsche’s formulation for interface problems with spline-based finite elements, Internat. J. Numer. Methods Engrg., 104, 7, 676-696 (2015) · Zbl 1352.65515
[49] Shahbazi, K., An explicit expression for the penalty parameter of the interior penalty method, J. Comput. Phys., 205, 2, 401-407 (2005) · Zbl 1072.65149
[50] Burman, E., A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions, SIAM J. Numer. Anal., 50, 4, 1959-1981 (2012) · Zbl 1262.65165
[51] Kollmannsberger, S.; Özcan, A.; Baiges, J.; Ruess, M.; Rank, E.; Reali, A., Parameter-free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches, Internat. J. Numer. Methods Engrg., 101, 9, 670-699 (2015) · Zbl 1352.65520
[52] Boiveau, T.; Burman, E., A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity, IMA J. Numer. Anal., 36, 2, 770-795 (2016) · Zbl 1433.74101
[53] Burman, E.; Hansbo, P.; Larson, M. G., The penalty free Nitsche method and nonconforming finite elements for the Signorini problem, SIAM J. Numer. Anal., 55, 6, 2523-2539 (2017) · Zbl 1457.65183
[54] Schillinger, D.; Harari, I.; Hsu, M.-C.; Kamensky, D.; Stoter, S. K.; Yu, Y.; Zhao, Y., The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements, Comput. Methods Appl. Mech. Engrg., 309, 625-652 (2016)
[55] Chouly, F.; Hild, P., A Nitsche-based method for unilateral contact problems: numerical analysis, SIAM J. Numer. Anal., 51, 2, 1295-1307 (2013) · Zbl 1268.74033
[56] Chouly, F., An adaptation of Nitsche’s method to the Tresca friction problem, J. Math. Anal. Appl., 411, 1, 329-339 (2014) · Zbl 1311.74112
[57] Chouly, F.; Hild, P.; Renard, Y., Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments, Math. Comp., 84, 293, 1089-1112 (2015) · Zbl 1308.74113
[58] Chouly, F.; Fabre, M.; Hild, P.; Mlika, R.; Pousin, J.; Renard, Y., An overview of recent results on Nitsche’s method for contact problems, (Bordas, Stéphane; Burman, Erik; Larson, Mats G.; Olshanskii, Maxim, Proceedings of the UCL Workshop 2016 on Geometrically Unfitted Finite Element Methods and Applications. Proceedings of the UCL Workshop 2016 on Geometrically Unfitted Finite Element Methods and Applications, Lecture Notes in Computational Science and Engineering, vol. 121 (2017)), 93-141 · Zbl 1390.74003
[59] Guo, Y.; Ruess, M.; Schillinger, D., A parameter-free variational coupling approach for trimmed isogeometric thin shells, Comput. Mech., 1-23 (2016)
[60] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41, 5257-5296 (2006) · Zbl 1119.74024
[61] Cazzani, A.; Stochino, F.; Turco, E., An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech., 96, 10, 1220-1244 (2016)
[63] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[66] Renard, Y., Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity, Comput. Methods Appl. Mech. Engrg., 256, 38-55 (2013) · Zbl 1352.74194
[67] Chouly, F.; Mlika, R.; Renard, Y., An unbiased Nitsche’s approximation of the frictional contact between two elastic structures, Numer. Math., 139, 3, 593-631 (2018) · Zbl 1391.74169
[68] Mlika, R.; Renard, Y.; Chouly, F., An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact, Comput. Methods Appl. Mech. Engrg., 325, Supplement C, 265-288 (2017)
[70] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, x+302 (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0884.65097
[71] Harari, I.; Shavelzon, E., Embedded kinematic boundary conditions for thin plate bending by Nitsche’s approach, Internat. J. Numer. Methods Engrg., 92, 1, 99-114 (2012) · Zbl 1352.74162
[73] Sauer, R. A.; De Lorenzis, L., An unbiased computational contact formulation for 3D friction, Internat. J. Numer. Methods Engrg., 101, 4, 251-280 (2015) · Zbl 1352.74211
[74] Moussaoui, M.; Khodja, K., Régularité des solutions d’un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan, Comm. Partial Differential Equations, 17, 5-6, 805-826 (1992) · Zbl 0806.35049
[75] Auliac, S.; Belhachmi, Z.; Ben Belgacem, F.; Hecht, F., Quadratic finite elements with non-matching grids for the unilateral boundary contact, ESAIM Math. Model. Numer. Anal., 47, 4, 1185-1203 (2013) · Zbl 1308.74140
[76] Dimitri, R.; De Lorenzis, L.; Scott, M.; Wriggers, P.; Taylor, R.; Zavarise, G., Isogeometric large deformation frictionless contact using T-splines, Comput. Methods Appl. Mech. Engrg., 269, 394-414 (2014) · Zbl 1296.74071
[77] Dörsek, P.; Melenk, J. M., Adaptive \(h p\)-FEM for the contact problem with Tresca friction in linear elasticity: the primal-dual formulation and a posteriori error estimation, Appl. Numer. Math., 60, 7, 689-704 (2010) · Zbl 1306.74036
[78] Lee, C.-Y.; Oden, J. T., A posteriori error estimation of \(h-p\) finite element approximations of frictional contact problems, Comput. Methods Appl. Mech. Engrg., 113, 1-2, 11-45 (1994) · Zbl 0847.73062
[79] Juettler, B.; Langer, U.; Mantzaflaris, A.; Moore, S.; Zulehner, W., Geometry + simulation modules: implementing isogeometric analysis, Proc. Appl. Math. Mech., 14, 1, 961-962 (2014), Special Issue: 85th Annual Meeting of the Int. Assoc. of Appl. Math. and Mech. (GAMM), Erlangen 2014
[80] Zienkiewicz, O.; Taylor, R.; Zhu, J., 9-The patch test, reduced integration, and non-conforming elements, (Zienkiewicz, O.; Taylor, R.; Zhu, J., The Finite Element Method Set (2005), Butterworth-Heinemann: Butterworth-Heinemann Oxford), 329-355
[81] Chen, J.; Li, C.; Chen, W., A family of spline finite elements, Comput. Struct., 88, 11, 718-727 (2010)
[82] Bazilevs, Y.; Beirao da Veiga, L.; Cottrell, J. A.; Hughes, T. J.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 07, 1031-1090 (2006) · Zbl 1103.65113
[83] Reddy, J. N., Theory and Analysis of Elastic Plates and Shells (2006), CRC press
[84] Adam, C.; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells, Comput. Methods Appl. Mech. Engrg., 284, 106-137 (2015) · Zbl 1423.74860
[85] Young, W. C.; Budynas, R. G., Roark’s Formulas for Stress and Strain, Vol. 7 (2002), McGraw-Hill New York
[87] Taylor, R. L.; Papadopoulos, P., On a patch test for contact problems in two dimensions, Nonlinear Comput. Mech., 690-702 (1991)
[88] De Lorenzis, L.; Evans, J.; Hughes, T.; Reali, A., Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21-54 (2015) · Zbl 1423.74947
[89] Crisfield, M., Re-visiting the contact patch test, Internat. J. Numer. Methods Engrg., 48, 3, 435-449 (2000) · Zbl 0969.74062
[90] El-Abbasi, N.; Bathe, K.-J., Stability and patch test performance of contact discretizations and a new solution algorithm, Comput. Struct., 79, 16, 1473-1486 (2001)
[91] Wriggers, P.; Zavarise, G., A formulation for frictionless contact problems using a weak form introduced by Nitsche, Comput. Mech., 41, 3, 407-420 (2008) · Zbl 1162.74419
[92] Atroshchenko, E.; Tomar, S.; Xu, G.; Bordas, S. P., Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub-and super-geometric analysis to Geometry-Independent Field approximaTion (GIFT), Internat. J. Numer. Methods Engrg., 114, 10, 1131-1159 (2018)
[95] Bui, H. P.; Tomar, S.; Courtecuisse, H.; Audette, M.; Cotin, S.; Bordas, S. P., Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation, Int. J. Numer. Methods Biomed. Eng., 34, 5, e2958 (2018)
[97] Hauseux, P.; Hale, J. S.; Bordas, S. P., Calculating the Malliavin derivative of some stochastic mechanics problems, PLoS One, 12, 12, e0189994 (2017)
[98] Hauseux, P.; Hale, J. S.; Bordas, S. P., Accelerating Monte Carlo estimation with derivatives of high-level finite element models, Comput. Methods Appl. Mech. Engrg., 318, 917-936 (2017)
[99] Ley, C.; Bordas, S., What makes data science different? a discussion involving statistics 2.0 and computational sciences, Int. J. Data Sci. Anal., 1-9 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.