×

zbMATH — the first resource for mathematics

Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-enhanced damage models. (English) Zbl 1440.74348
Summary: Two anisotropic stress-based gradient-enhanced damage models are proposed to address the issue of spurious damage growth typical of continuous standard gradient-enhanced damage models. Both models are based on a decreasing interaction length upon decreasing stresses and do not require additional model parameters or extra degrees of freedom when compared to standard gradient-enhanced models. It is observed that with the proposed models damage spreading is significantly reduced due to the occurrence of non-physical oscillations in the nonlocal strain field near the strain localization band. Model improvements to eliminate these strain oscillations upon vanishing length scale values are proposed. The capability of the models and their patched versions to correctly simulate damage initiation and propagation is investigated by means of mode-I failure, shear band and four-point bending tests.

MSC:
74R05 Brittle damage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pijaudier-Cabot, G.; Bažant, Z., Nonlocal damage theory, J. Eng. Mech., 113, 10, 1512-1533 (1987)
[2] Peerlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; De Vree, J. H.P., Gradient enhanced damage for quasi-brittle materials, Internat. J. Numer. Methods Engrg., 39, 19, 3391-3403 (1996)
[3] Bažant, Z.; Belytschko, T.; Chang, T. P., Continuum theory for strain-softening, J. Eng. Mech., 110, 1666-1692 (1984)
[4] Geers, M. G.D.; de Borst, R.; Brekelmans, W. A.M.; Peerlings, R. H.J., Strain-based transient-gradient damage model for failure analyses, Comput. Methods Appl. Mech. Engrg., 160, 1-2, 133-153 (1998)
[5] Simone, A.; Askes, H.; Sluys, L. J., Incorrect initiation and propagation of failure in non-local and gradient-enhanced media, Int. J. Solids Struct., 41, 2, 351-363 (2004)
[6] Saroukhani, S.; Vafadari, R.; Simone, A., A simplified implementation of a gradient-enhanced damage model with transient length scale effects, Comput. Mech., 51, 6, 899-909 (2012)
[7] Geers, M. G.D.; Peerlings, R. H.J.; Brekelmans, W. A.M.; de Borst, R., Phenomenological nonlocal approaches based on implicit gradient-enhanced damage, Acta Mech., 144, 1-15 (2000)
[8] Poh, L. H.; Sun, G., Localizing gradient damage model with decreasing interactions, Internat. J. Numer. Methods Engrg., 110, 6, 503-522 (2016)
[9] Pijaudier-Cabot, G.; Haidar, K.; Dubé, J.-F., Non-local damage model with evolving internal length, Int. J. Numer. Anal. Methods Geomech., 28, 7-8, 633-652 (2004)
[10] Nguyen, G. D., A damage model with evolving nonlocal interactions, Int. J. Solids Struct., 48, 10, 1544-1559 (2011)
[11] Bažant, Z., Nonlocal damage theory based on micromechanics of crack interaction, J. Eng. Mech., 120, 593-617 (1994)
[12] Giry, C.; Dufour, F.; Mazars, J., Stress-based nonlocal damage model, Int. J. Solids Struct., 48, 25-26, 3431-3443 (2011)
[13] Wu, L.; Sket, F.; Molina-Aldareguia, J. M.; Makradi, A.; Adam, L.; Doghri, I.; Noels, L., A study of composite laminates failure using an anisotropic gradient-enhanced damage mean-field homogenization model, Compos. Struct., 126, 246-264 (2015)
[14] Verhoosel, C. V.; de Borst, R., A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg., 96, 1, 43-62 (2013)
[15] Wu, L.; Noels, L.; Adam, L.; Doghri, I., An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage, Int. J. Solids Struct., 50, 24, 3843-3860 (2013)
[16] Gutiérrez, M. A., Energy release control for numerical simulations of failure in quasi-brittle solids, Commun. Numer. Methods. Eng., 20, 1, 19-29 (2003)
[17] Harren, S. V.; Dève, H. E.; Asaro, R. J., Shear band formation in plane strain compression, Acta Metall., 36, 9, 2435-2480 (1988)
[18] Nemat-Nasser, S.; Okada, N., Radiographic and microscopic observation of shear bands in granular materials, Géotechnique, 51, 9, 753-765 (2001)
[19] Rodríguez-Ferran, A.; Morata, I.; Huerta, A., A new damage model based on non-local displacements, Int. J. Numer. Anal. Methods Geomech., 29, 5, 473-493 (2005)
[20] Askes, H.; Livieri, P.; Susmel, L.; Taylor, D.; Tovo, R., Intrinsic material length, theory of critical distances and gradient mechanics: analogies and differences in processing linear-elastic crack tip stress fields, Fatigue Fract. Eng. Mater. Struct., 36, 1, 39-55 (2012)
[21] Simone, A.; Wells, G. N.; Sluys, L. J., From continuous to discontinuous failure in a gradient-enhanced continuum damage model, Comput. Methods Appl. Mech. Engrg., 192, 41-42, 4581-4607 (2003)
[22] Celia, M. A.; Bouloutas, E. T.; Zarba, R. L., A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 7, 1483-1496 (1990)
[23] Ju, S.-H.; Kung, K.-J. S., Mass types, element orders and solution schemes for the Richards equation, Comput. Geosci., 23, 2, 175-187 (1997)
[24] Ouyang, H.; Xiao, D., Criteria for eliminating oscillation in analysis of heat-conduction equation by finite-element method, Commun. Numer. Methods. Eng., 10, 453-460 (1994)
[26] Fujii, H., Some remarks on finite element analysis of time-dependent field problems, (Theory and Practice in Finite Element Structural Analysis (1973)), 91-106
[27] Rank, E.; Katz, C.; Werner, H., On the importance of the discrete maximum principle in transient analysis using finite element methods, Internat. J. Numer. Methods Engrg., 19, 1771-1782 (1983)
[28] Axelsson, O.; Kolotilina, L., Diagonally compensated reduction and related preconditioning methods, Numer. Linear Algebra Appl., 1, 2, 155-177 (1994)
[29] van Mier, J. G.M., Fracture Processes of Concrete (1996), CRC Press
[30] Thai, T. Q.; Rabczuk, T.; Bazilevs, Y.; Meschke, G., A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 304, 584-604 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.