×

Multiscale modeling and characterization of coupled damage-healing-plasticity for granular materials in concurrent computational homogenization approach. (English) Zbl 1440.74085

Summary: A multiscale modeling and characterization method for coupled damage-healing-plasticity occurring in granular material is proposed. The characterization is performed on the basis of multiscale modeling of granular material in the frame of concurrent second-order computational homogenization method, in which granular material is modeled as gradient-enhanced Cosserat continuum at the macroscale. The damage-healing-plasticity is characterized in terms of meso-structural evolution of discrete particle assembly within representative volume elements (RVEs) assigned to selected local material points in macroscopic continuum, with no need to specify macroscopic phenomenological constitutive models, failure criteria along with evolution laws, and associated macroscopic material parameters. The proposed modeling and characterization method for coupled damage-healing-plasticity in granular material is comprised of the following three constituents. The incremental non-linear constitutive relation for the discrete particle assembly of RVE is first established. Then the meso-mechanically informed incremental non-linear constitutive relation of macroscopic gradient-enhanced Cosserat continuum is derived from volume averages of the RVE-scale solutions. Finally the thermodynamic framework is set up to define meso-mechanically informed anisotropic damage and healing factors, anisotropic net damage factors combining both damage and healing effects, and plastic strains. Densities of damage, plastic and total dissipative energies as well as non-dissipative healing energy, as scalar internal state variables, are provided to compare the effects of damage, healing and plasticity on material failure and structural collapse. The numerical example of strain localization and softening problem is performed to demonstrate the performance and applicability of the proposed multiscale modeling and characterization method of coupled damage-healing-plasticity for granular materials.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74E20 Granularity
74Q10 Homogenization and oscillations in dynamical problems of solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Luscher, D. J.; Mcdowell, D. L.; Bronkhorst, C. A., A second gradient theoretical framework for hierarchical multiscale modeling of materials, Int. J. Plast., 26, 1248-1275 (2010) · Zbl 1436.74005
[2] Kouznetsova, V.; Brekelmans, W. A.M.; Baaijens, F. P.T., An approach to micro-macro modeling of heterogeneous materials, Comput. Mech., 27, 37-48 (2001) · Zbl 1005.74018
[3] Li, X.; Liu, Q.; Zhang, J., A micro-macro homogenization approach for discrete particle assembly - Cosserat continuum modeling of granular materials, Int. J. Solids Struct., 47, 291-303 (2010) · Zbl 1183.74042
[4] Kouznetsova, V.; Geers, M. G.D.; Brekelmans, W. A.M., Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Internat. J. Numer. Methods Engrg., 54, 1235-1260 (2002) · Zbl 1058.74070
[5] Kouznetsova, V.; Geers, M. G.D.; Brekelmans, W. A.M., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput. Methods Appl. Mech. Engrg., 193, 5525-5550 (2004) · Zbl 1112.74469
[6] Li, X.; Zhang, X.; Zhang, J., A generalized Hill’s lemma and micromechanically based macroscopic constitutive model for heterogeneous granular materials, Comput. Methods Appl. Mech. Engrg., 199, 3137-3152 (2010) · Zbl 1225.74026
[7] Gardiner, B. S.; Tordesillas, A., Micromechanical constitutive modelling of granular media: evolution and loss of contact in particle clusters, J. Eng. Math., 52, 93-106 (2005) · Zbl 1080.74016
[8] Onck, P. R., Cosserat modeling of cellular solids, C. R. Méc., 330, 717-722 (2002) · Zbl 1177.74318
[9] Ehlers, W.; Ramm, E.; Diebels, S.; D’Addetta, G. A., From particle ensembles to cosserat continua: homogenization of contact forces towards stresses and couple stresses, Int. J. Solids Struct., 40, 6681-6702 (2003) · Zbl 1053.74002
[10] Kruyt, N. P., Statics and kinematics of discrete cosserat-type granular materials, Int. J. Solids Struct., 40, 511-534 (2003) · Zbl 1087.74516
[11] D’Addetta, G. A.; Ramm, E.; Diebels, S.; Ehlers, W., A particle center based homogenization strategy for granular assemblies, Eng. Comput., 21, 360-383 (2004) · Zbl 1062.74595
[12] Pasternak, E.; Mühlhaus, H. B., Generalised homogenisation procedures for granular materials, J. Eng. Math., 52, 199-229 (2005) · Zbl 1176.74056
[13] Chang, C. S.; Kuhn, M. R., On virtual work and stress in granular media, Int. J. Solids Struct., 42, 3773-3793 (2005) · Zbl 1119.74341
[14] Alonso-Marroquín, F., Static equations of the cosserat continuum derived from intra-granular stresses, Granul. Matter, 13, 189-196 (2011)
[15] Li, X.; Liang, Y.; Duan, Q.; Schrefler, B. A.; Du, Y., A mixed finite element procedure of gradient Cosserat continuum for second-order computational homogenisation of granular materials, Comput. Mech., 54, 1331-1356 (2014) · Zbl 1311.74125
[16] Geers, M. G.D.; Kouznetsova, V. G.; Brekelmans, W. A.M., Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math., 234, 2175-2182 (2010) · Zbl 1402.74107
[17] Li, X.; Zhang, J.; Zhang, X.; Li, X.; Zhang, J., Micro-macro homogenization of gradient-enhanced Cosserat media, Eur. J. Mech., 30, 362-372 (2011) · Zbl 1278.74141
[18] Kachanov, L. M., Time rupture under creep conditions, Izv. Akad. Nauk SSSR Otd. Tekh. Nauk, 8, 26-31 (1958) · Zbl 0107.18501
[19] Lemaitre, J.; Chaboche, J. L., Mechanics of Solid Materials (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0743.73002
[20] Simo, J. C.; Ju, J. W., Strain- and stress-based continuum damage models, I. Formulation, Int. J. Solids Struct., 23, 821-840 (1987) · Zbl 0634.73106
[21] Yu, H. D.; Chen, W. Z.; Li, X. L.; Sillen, X., A transversely isotropic damage model for boom clay, Rock Mech. Rock Eng., 47, 207-219 (2014)
[22] Silani, M.; Talebi, H.; Hamouda, A. M.; Rabczu, T., Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach, J. Comput. Sci., 15, 18-23 (2016)
[23] Ju, J. W.; Yuan, K. Y.; Kuo, A. W., Novel strain energy based coupled elastoplastic damage and healing models for geomaterials -Part I: Formulations, Int. J. Damage Mech., 21, 525-549 (2012)
[24] Barbero, E. J.; Greco, F.; Lonetti, P., Continuum damage-healing mechanics with application to self-healing composites, Int. J. Damage Mech., 14, 51-81 (2005)
[25] Herbst, O.; Luding, S., Modeling particulate self-healing materials and application to uni-axial compression, Int. J. Fract., 154, 87-103 (2008) · Zbl 1203.74025
[26] Plaisted, T. A.; Nemat-Nasser, S., Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer, Acta Mater., 55, 5684-5696 (2007)
[27] Darabi, M. K.; Al-Rub, R. K.A.; Little, D. N., A continuum damage mechanics framework for modeling micro-damage healing, Int. J. Solids Struct., 49, 492-513 (2012)
[28] Xu, W.; Sun, X.; Koeppel, B. J.; Zbib, H. M., A continuum thermo-inelastic model for damage and healing in self-healing glass materials, Int. J. Plast., 62, 1-16 (2014)
[29] Ju, J. W.; Yuan, K. Y., New strain-energy-based coupled elastoplastic two-parameter damage and healing models for earth-moving processes, Int. J. Damage Mech., 21, 989-1019 (2012)
[30] Voyiadjis, G. Z.; Amir, S.; Guoqiang, L. I., A thermodynamic consistent damage and healing model for self healing materials, Int. J. Plast., 27, 1025-1044 (2011) · Zbl 1454.74136
[31] Voyiadjis, G. Z.; Shojaei, A.; Li, G.; Kattan, P. I., Continuum damage-healing mechanics with introduction to new healing variables, Int. J. Damage Mech., 21, 391-414 (2012)
[32] Voyiadjis, G. Z.; Kattan, P. I., Healing and super healing in continuum damage mechanics, Int. J. Damage Mech., 23, 245-260 (2014)
[33] Li, X.; Duxbury, P. G.; Lyons, P., Coupled creep-elastoplastic-damage analysis for isotropic and anisotropic nonlinear materials, Int. J. Solids Struct., 31, 1181-1206 (1994) · Zbl 0945.74675
[34] Li, X.; Du, Y.; Duan, Q., Micromechanically informed constitutive model and anisotropic damage characterization of cosserat continuum for granular materials, Int. J. Damage Mech., 22, 643-682 (2013)
[35] Li, X.; Du, Y.; Duan, Q.; Ju, J. W., Thermodynamic framework for damage-healing-plasticity of granular materials and net damage variable, Int. J. Damage Mech., 25, 153-177 (2016)
[36] Li, X.; Chu, X.; Feng, Y. T., A discrete particle model and numerical modeling of the failure modes of granular materials, Eng. Comput., 22, 894-920 (2005) · Zbl 1191.74055
[37] Hughes, T. J.R., The Finite Element Method (1987), Printice-Hall International, Inc. · Zbl 0634.73056
[38] Coenen, E. W.C.; Kouznetsova, V. G.; Geers, M. G., Novel boundary conditions for strain localization analysis in microstructural volume elements, Internat. J. Numer. Methods Engrg., 90, 1-21 (2012) · Zbl 1242.74083
[39] Svenning, E.; Fagerström, M.; Larsson, F., On computational homogenization of microscale crack propagation, Internat. J. Numer. Methods Engrg., 108, 76-90 (2016)
[40] Mroz, Z.; Zienkiewicz, O. C., Uniform formulation of constitutive eqautions for clays and soils, (Desai, C. S.; Gallagher, R. H., Mechanics of Engineering Materials (1984), John Wiley & Sons: John Wiley & Sons Chichester), 415-450, (Chapter 22)
[41] Zienkiewicz, O. C.; Mroz, Z., Generalized plasticity formulation and applications to geomechanics, (Desai, C. S.; Gallagher, R. H., Mechanics of Engineering Materials (1984), John Wiley & Sons: John Wiley & Sons Chichester), 655-680, (Chapter 33)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.