×

zbMATH — the first resource for mathematics

Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning. (English) Zbl 1440.74016
Summary: This paper presents a new meta-modeling framework that employs deep reinforcement learning (DRL) to generate mechanical constitutive models for interfaces. The constitutive models are conceptualized as information flow in directed graphs. The process of writing constitutive models is simplified as a sequence of forming graph edges with the goal of maximizing the model score (a function of accuracy, robustness and forward prediction quality). Thus meta-modeling can be formulated as a Markov decision process with well-defined states, actions, rules, objective functions and rewards. By using neural networks to estimate policies and state values, the computer agent is able to efficiently self-improve the constitutive model it generated through self-playing, in the same way AlphaGo Zero (the algorithm that outplayed the world champion in the game of Go) improves its gameplay. Our numerical examples show that this automated meta-modeling framework does not only produces models which outperform existing cohesive models on benchmark traction-separation data, but is also capable of detecting hidden mechanisms among micro-structural features and incorporating them in constitutive models to improve the forward prediction accuracy, both of which are difficult tasks to do manually.

MSC:
74A20 Theory of constitutive functions in solid mechanics
74A50 Structured surfaces and interfaces, coexistent phases
74S05 Finite element methods applied to problems in solid mechanics
74M25 Micromechanics of solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rice, James R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 2, 379-386 (1968)
[2] Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery R., A unified potential-based cohesive model of mixed-mode fracture, J. Mech. Phys. Solids, 57, 6, 891-908 (2009)
[3] Wang, Kun; Sun, WaiChing, A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media, Comput. Methods Appl. Mech. Engrg., 318, 1-32 (2017)
[4] Bryant, Eric C.; Sun, WaiChing, A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics, Comput. Methods Appl. Mech. Engrg. (2018), URL http://www.sciencedirect.com/science/article/pii/S0045782518303943
[5] Rabczuk, Timon; Areias, P. M.A., A new approach for modelling slip lines in geological materials with cohesive models, Int. J. Numer. Anal. Methods Geomech., 30, 11, 1159-1172 (2006) · Zbl 1196.74137
[6] Borja, Ronaldo I.; Foster, Craig D., Continuum mathematical modeling of slip weakening in geological systems, J. Geophys. Res. Solid Earth, 112, B4 (2007)
[7] Elices, M. G.G. V.; Guinea, G. V.; Gomez, J.; Planas, J., The cohesive zone model: advantages, limitations and challenges, Eng. Fract. Mech., 69, 2, 137-163 (2002)
[8] Ohnaka, Mitiyasu; Yamashita, Teruo, A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters, J. Geophys. Res. Solid Earth, 94, B4, 4089-4104 (1989)
[9] Wang, Kun; Sun, WaiChing, A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning, Comput. Methods Appl. Mech. Engrg., 334, 337-380 (2018)
[10] Sun, WaiChing; Wong, Teng-fong, Prediction of permeability and formation factor of sandstone with hybrid lattice Boltzmann/finite element simulation on microtomographic images, Int. J. Rock Mech. Mining Sci., 106, 269-277 (2018)
[11] Ortiz, Michael; Pandolfi, Anna, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Internat. J. Numer. Methods Engrg., 44, 9, 1267-1282 (1999) · Zbl 0932.74067
[12] Rudnicki, John W., Fracture mechanics applied to the Earth’s crust, Ann. Rev. Earth Planet. Sci., 8, 1, 489-525 (1980)
[13] Paterson, Mervyn S.; Wong, Teng-fong, Experimental Rock Deformation-The Brittle Field (2005), Springer Science & Business Media
[14] Sun, WaiChing, A unified method to predict diffuse and localized instabilities in sands, Geomech. Geoeng., 8, 2, 65-75 (2013)
[15] Borja, Ronaldo I., Plasticity: modeling & computation (2013), Springer Science & Business Media · Zbl 1279.74003
[16] Wang, Kun; Sun, Waiching; Salager, Simon; Na, S.; Khaddour, Ghonwa, Identifying material parameters for a micro-polar plasticity model via x-ray micro-ct images: lessons learned from the curve-fitting exercises, Int. J. Multiscale Comput. Eng., 14, 4, 389-413 (2016)
[17] Na, SeonHong; Sun, WaiChing, Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range, Comput. Methods Appl. Mech. Engrg., 318, 667-700 (2017)
[18] Moës, Nicolas; Cloirec, Mathieu; Cartraud, Patrice; Remacle, J-F, A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Engrg., 192, 28-30, 3163-3177 (2003) · Zbl 1054.74056
[19] Hirschberger, Claudia Britta; Sukumar, Natarajan; Steinmann, Paul, Computational homogenization of material layers with micromorphic mesostructure, Phil. Mag., 88, 30-32, 3603-3631 (2008)
[20] Hirschberger, C. B.; Ricker, S.; Steinmann, P.; Sukumar, N., Computational multiscale modelling of heterogeneous material layers, Eng. Fract. Mech., 76, 6, 793-812 (2009)
[21] Feyel, Frédéric, A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Engrg., 192, 28-30, 3233-3244 (2003) · Zbl 1054.74727
[22] Sun, WaiChing; Andrade, José E.; Rudnicki, John W.; Eichhubl, Peter, Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations, Geophys. Res. Lett., 38, 10 (2011)
[23] Sun, Wai Ching; Andrade, Jose E.; Rudnicki, John W., Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability, Internat. J. Numer. Methods Engrg., 88, 12, 1260-1279 (2011) · Zbl 1242.74165
[24] Fish, Jacob, Practical Multiscaling (2013), John Wiley & Sons
[25] Sun, WaiChing; Kuhn, Matthew R.; Rudnicki, John W., A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band, Acta Geotech., 8, 5, 465-480 (2013)
[26] Wang, Kun; Sun, WaiChing, Anisotropy of a tensorial Bishop’s coefficient for wetted granular materials, J. Eng. Mech., 143, 3, B4015004 (2015)
[27] Liu, Yang; Sun, WaiChing; Yuan, Zifeng; Fish, Jacob, A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials, Internat. J. Numer. Methods Engrg., 106, 2, 129-160 (2016) · Zbl 1352.74082
[28] Kuhn, Matthew R.; Sun, WaiChing; Wang, Qi, Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability, Acta Geotech., 10, 4, 399-419 (2015)
[29] Wang, Kun; Sun, WaiChing, A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain, Comput. Methods Appl. Mech. Engrg., 304, 546-583 (2016) · Zbl 1423.76286
[30] Wu, Huanran; Guo, Ning; Zhao, Jidong, Multiscale modeling and analysis of compaction bands in high-porosity sandstones, Acta Geotech., 13, 3, 575-599 (2018)
[31] Kirane, Kedar; Ghosh, Somnath, A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE model, Int. J. Fatigue, 30, 12, 2127-2139 (2008)
[32] Verhoosel, Clemens V.; Remmers, Joris J. C.; Gutiérrez, Miguel A.; De Borst, Rene, Computational homogenization for adhesive and cohesive failure in quasi-brittle solids, Internat. J. Numer. Methods Engrg., 83, 8-9, 1155-1179 (2010) · Zbl 1197.74139
[33] Keshavarz, Shahriyar; Ghosh, Somnath, Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys, Acta Mater., 61, 17, 6549-6561 (2013)
[34] Panchal, Jitesh H.; Kalidindi, Surya R.; McDowell, David L., Key computational modeling issues in integrated computational materials engineering, Comput. Aided Des., 45, 1, 4-25 (2013)
[35] Faisal, Tanvir R.; Hristozov, Nicolay; Western, Tamara L.; Rey, Alejandro D.; Pasini, Damiano, Computational study of the elastic properties of Rheum rhabarbarum tissues via surrogate models of tissue geometry, J. Struct. Biol., 185, 3, 285-294 (2014)
[36] Liu, Yang; Sun, WaiChing; Fish, Jacob, Determining material parameters for critical state plasticity models based on multilevel extended digital database, J. Appl. Mech., 83, 1, 011003 (2016)
[37] Tallman, Aaron E.; Swiler, Laura P.; Wang, Yan; McDowell, David L., Reconciled top-down and bottom-up hierarchical multiscale calibration of bcc fe crystal plasticity, Int. J. Multiscale Comput. Eng., 15, 6 (2017)
[38] Le, B. A.; Yvonnet, Julien; He, Q.-C., Computational homogenization of nonlinear elastic materials using neural networks, Internat. J. Numer. Methods Engrg., 104, 12, 1061-1084 (2015) · Zbl 1352.74266
[39] Bessa, M. A.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, Daniel W.; Brinson, C.; Chen, W.; Liu, Wing Kam, A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320, 633-667 (2017)
[40] Versino, Daniele; Tonda, Alberto; Bronkhorst, Curt A., Data driven modeling of plastic deformation, Comput. Methods Appl. Mech. Engrg., 318, 981-1004 (2017)
[41] Kafka, Orion L.; Yu, Cheng; Shakoor, Modesar; Liu, Zeliang; Wagner, Gregory J.; Liu, Wing Kam, Data-driven mechanistic modeling of influence of microstructure on high-cycle fatigue life of nickel titanium, JOM, 1-5 (2018)
[42] Wulfinghoff, Stephan; Cavaliere, Fabiola; Reese, Stefanie, Model order reduction of nonlinear homogenization problems using a Hashin-Shtrikman type finite element method, Comput. Methods Appl. Mech. Engrg., 330, 149-179 (2018)
[43] Lefik, M.; Schrefler, B. A., Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading, Comput. Struct., 80, 22, 1699-1713 (2002)
[44] Pan, Sinno Jialin; Yang, Qiang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng., 22, 10, 1345-1359 (2010)
[45] Sutton, Richard S., Introduction: The challenge of reinforcement learning, (Reinforcement Learning (1992), Springer), 1-3
[46] Silver, David; Huang, Aja; Maddison, Chris J.; Guez, Arthur; Sifre, Laurent; Van Den Driessche, George; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda; Lanctot, Marc, Mastering the game of Go with deep neural networks and tree search, nature, 529, 7587, 484-489 (2016)
[47] Silver, David; Schrittwieser, Julian; Simonyan, Karen; Antonoglou, Ioannis; Huang, Aja; Guez, Arthur; Hubert, Thomas; Baker, Lucas; Lai, Matthew; Bolton, Adrian, Mastering the game of Go without human knowledge, Nature, 550, 7676, 354 (2017)
[48] Shannon, Claude E., XXII. programming a computer for playing chess, London Edinburgh Dublin Phil. Mag. J. Sci., 41, 314, 256-275 (1950) · Zbl 0041.44605
[49] Bellman, Richard, A Markovian decision process, J. Math. Mech., 679-684 (1957) · Zbl 0078.34101
[50] Dolcetta, ICapuzzo; Ishii, Hitoshi, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11, 1, 161-181 (1984) · Zbl 0553.49024
[51] Sun, WaiChing; Ostien, Jakob T.; Salinger, Andrew G., A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain, Int. J. Numer. Anal. Methods Geomech., 37, 16, 2755-2788 (2013)
[52] Sun, WaiChing; Chen, Qiushi; Ostien, Jakob T., Modeling the hydro-mechanical responses of strip and circular punch loadings on water-saturated collapsible geomaterials, Acta Geotech., 9, 5, 903-934 (2014)
[53] Sun, WaiChing, A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Internat. J. Numer. Methods Engrg., 103, 11, 798-839 (2015) · Zbl 1352.76116
[54] Salinger, Andrew G.; Bartlett, Roscoe A.; Bradley, Andrew M.; Chen, Qiushi; Demeshko, Irina P.; Gao, Xujiao; Hansen, Glen A.; Mota, Alejandro; Muller, Richard P.; Nielsen, Erik, Albany: using component-based design to develop a flexible, generic multiphysics analysis code, Int. J. Multiscale Comput. Eng., 14, 4 (2016)
[55] Bang-Jensen, Jørgen; Gutin, Gregory Z., Digraphs: Theory, Algorithms and Applications (2008), Springer Science & Business Media · Zbl 1210.05001
[56] Hagberg, Aric; Swart, Pieter; S. C.hult, Daniel, Exploring network structure, dynamics, and function using NetworkXTechnical report (2008), Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
[57] Kendall, Maurice George, The advanced theory of statistics, (The advanced theory of statistics (1946), Charles Griffin and Co., Ltd.: Charles Griffin and Co., Ltd. London) · Zbl 0063.03217
[58] Anderson, Theodore W.; Darling, Donald A., A test of goodness of fit, J. Amer. Statist. Assoc., 49, 268, 765-769 (1954) · Zbl 0059.13302
[59] Scholz, Fritz W.; Stephens, Michael A., K-sample anderson-darling tests, J. Amer. Statist. Assoc., 82, 399, 918-924 (1987)
[60] Hornik, Kurt; Stinchcombe, Maxwell; White, Halbert, Multilayer feedforward networks are universal approximators, Neural Netw., 2, 5, 359-366 (1989) · Zbl 1383.92015
[61] Hochreiter, Sepp; Schmidhuber, Jürgen, Long short-term memory, Neural Comput., 9, 8, 1735-1780 (1997)
[62] Cho, Kyunghyun; Van Merriënboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua, Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014), arXiv preprint arXiv:1406.1078
[63] Chollet, François, Keras (2015)
[64] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E., Scikit-learn: machine learning in python, J. Mach. Learn. Res., 12, 2825-2830 (2011) · Zbl 1280.68189
[65] Kingma, Diederik P.; Ba, Jimmy, Adam: a method for stochastic optimization (2014), arXiv preprint arXiv:1412.6980
[66] Silver, David; Hubert, Thomas; Schrittwieser, Julian; Antonoglou, Ioannis; Lai, Matthew; Guez, Arthur; Lanctot, Marc; Sifre, Laurent; Kumaran, Dharshan; Graepel, Thore, Mastering chess and shogi by self-play with a general reinforcement learning algorithm (2017), arXiv preprint arXiv:1712.01815
[67] Browne, Cameron B.; Powley, Edward; Whitehouse, Daniel; Lucas, Simon M.; Cowling, Peter I.; Rohlfshagen, Philipp; Tavener, Stephen; Perez, Diego; Samothrakis, Spyridon; Colton, Simon, A survey of monte carlo tree search methods, IEEE Tran. Comput. Intell. AI Games, 4, 1, 1-43 (2012)
[68] Nasrabadi, Nasser M., Pattern recognition and machine learning, J. Electron. Imaging, 16, 4, 049901 (2007)
[69] Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel; Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.; Ostrovski, Georg, Human-level control through deep reinforcement learning, Nature, 518, 7540, 529 (2015)
[70] Battaglia, Peter W.; Hamrick, Jessica B.; Bapst, Victor; Sanchez-Gonzalez, Alvaro; Zambaldi, Vinicius; Malinowski, Mateusz; Tacchetti, Andrea; Raposo, David; Santoro, Adam; Faulkner, Ryan, Relational inductive biases, deep learning, and graph networks (2018), arXiv preprint arXiv:1806.01261
[71] Fu, Pengcheng; Dafalias, Yannis F., Fabric evolution within shear bands of granular materials and its relation to critical state theory, Int. J. Numer. Anal. Methods Geomech., 35, 18, 1918-1948 (2011)
[72] Li, Xiang Song; Dafalias, Yannis F., Anisotropic critical state theory: role of fabric, J. Eng. Mech., 138, 3, 263-275 (2011)
[73] Pastor, M.; Chan, A. H.C.; Mira, P.; Manzanal, D.; Fernández Merodo, J. A.; Blanc, T., Computational geomechanics: the heritage of Olek Zienkiewicz, Internat. J. Numer. Methods Engrg., 87, 1-5, 457-489 (2011) · Zbl 1242.74058
[74] Timoshenko, Stephen, History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures (1953), Courier Corporation · Zbl 0052.24604
[75] Mehrabadi, Morteza M.; Nemat-Nasser, S.; Oda, M., On statistical description of stress and fabric in granular materials, Int. J. Numer. Anal. Methods Geomech., 6, 1, 95-108 (1982) · Zbl 0475.73124
[76] Dafalias, Yannis F.; Manzari, Majid T., Simple plasticity sand model accounting for fabric change effects, J. Eng. Mech., 130, 6, 622-634 (2004)
[77] Dafalias, Yannis F.; Papadimitriou, Achilleas G.; Li, Xiang S., Sand plasticity model accounting for inherent fabric anisotropy, J. Eng. Mech., 130, 11, 1319-1333 (2004)
[78] Tordesillas, Antoinette; Walker, David M.; Rechenmacher, Amy L.; Abedi, Sara, Discovering community structures and dynamical networks from grain-scale kinematics of shear bands in sand, (Advances in Bifurcation and Degradation in Geomaterials (2011), Springer), 67-73
[79] Tordesillas, Antoinette; Walker, David M.; Lin, Qun, Force cycles and force chains, Phys. Rev. E, 81, 1, 011302 (2010)
[80] Williams, John R.; Rege, Nabha, Coherent vortex structures in deforming granular materials, Mech. Cohesive-frictional Mater. Int. J. Exp. Model. Comput. Mater. Struct., 2, 3, 223-236 (1997)
[81] Liu, Guang; Sun, WaiChing; Lowinger, Steven M.; Zhang, ZhenHua; Huang, Ming; Peng, Jun, Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock, Acta Geotech., 1-26 (2018)
[82] Oliver, J.; Huespe, Alfredo Edmundo; Pulido, M. D.G.; Chaves, E., From continuum mechanics to fracture mechanics: the strong discontinuity approach, Eng. Fract. Mech., 69, 2, 113-136 (2002)
[83] Šmilauer, Václav; Catalano, Emanuele; Chareyre, Bruno; Dorofeenko, Sergei; Duriez, Jerome; Gladky, Anton; Kozicki, Janek; Modenese, Chiara; Scholtès, Luc; Sibille, Luc, Yade reference documentation, Yade Documentation, 474, 1 (2010)
[84] Cundall, Peter A.; Strack, Otto D. L., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.