## Testing fuzzy hypotheses based on vague observations: a $$p$$-value approach.(English)Zbl 1440.62104

Summary: This paper deals with the problem of testing statistical hypotheses when both the hypotheses and data are fuzzy. To this end, we first introduce the concept of fuzzy $$p$$-value and then develop an approach for testing fuzzy hypotheses by comparing a fuzzy $$p$$-value and a fuzzy significance level. Numerical examples are provided to illustrate the approach for different cases.

### MSC:

 62F86 Parametric inference and fuzziness 62F03 Parametric hypothesis testing

ump; Maple
Full Text:

### References:

 [1] Arnold BF (1998) Testing fuzzy hypotheses with crisp data. Fuzzy Sets Syst 94: 323–333 · Zbl 0940.62015 [2] Buckley JJ (2005) Fuzzy statistics: hypothesis testing. Soft Comput 9: 512–518 · Zbl 1079.62026 [3] Casals MR, Gil MA, Gil P (1986) On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets Syst 20: 175–190 · Zbl 0611.62018 [4] Colubi A (2009) Statistical inference about the means of fuzzy random variables: applications to the analysis of fuzzy- and real-valued data. Fuzzy Sets Syst 160: 344–356 · Zbl 1175.62021 [5] Couso I, Sanchez L (2008) Defuzzification of fuzzy p-values. In: Advances in soft computing, vol 48 (Soft methods for handling variability and imprecision). Springer, Heidelberg, pp 126–132 [6] Denoeux T, Masson MH, HĂ©bert PA (2005) Nonparametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets Syst 153: 1–28 · Zbl 1062.62075 [7] Dubois D, Prade H (1988) Possibility theory. Plenum Press, New-York · Zbl 0645.68108 [8] Filzmoser P, Viertl R (2004) Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59: 21–29 · Zbl 1052.62009 [9] Geyer CJ, Meeden GD (2005) Fuzzy and randomized confidence intervals and p-values. Stat Sci 20: 358–366 · Zbl 1130.62319 [10] Grzegorzewski P (2000) Testing statistical hypotheses with vague data. Fuzzy Sets Syst 112: 501–510 · Zbl 0948.62010 [11] Grzegorzewski P (2001) Fuzzy tests–defuzzification and randomization. Fuzzy Sets Syst 118: 437–446 · Zbl 0996.62013 [12] Knight K (2000) Mathematical statistics. Chapman & Hall/CRC, Boca Raton · Zbl 0935.62002 [13] Lubiano MA, Gil MA (1999) Estimating the expected value of fuzzy random variables in random samplings from finite populations. Stat Pap 40: 277–295 · Zbl 0942.62010 [14] Maple 9.5, Waterloo Maple Inc., Waterloo, Canada [15] Neyman J, Pearson ES (1933) The theory of statistical hypotheses in relation to probabilities a priori. Proc Camb Phil Soc 29: 492–510 · Zbl 0008.02401 [16] Parchami A, Taheri SM, Mashinchi M (2010) Fuzzy p-value in testing fuzzy hypotheses with crisp data. Stat Pap 51: 209–226 · Zbl 1247.62105 [17] Taheri SM, Arefi M (2009) Testing fuzzy hypotheses based on fuzzy test statistic. Soft Comput 13: 617–625 · Zbl 1170.62016 [18] Taheri SM, Behboodian J (1999) Neyman–Pearson Lemma for fuzzy hypotheses testing. Metrika 49: 3–17 · Zbl 1093.62520 [19] Taheri SM, Behboodian J (2001) A Bayesian approach to fuzzy hypotheses testing. Fuzzy Sets Syst 123: 39–48 · Zbl 0983.62015 [20] Taheri SM (2003) Trends in fuzzy statistics. Austrian J Stat 32: 239–257 [21] Tanaka H, Okuda T, Asai K et al (1979) Fuzzy information and decision in a statistical model. In: Gupta MM (eds) Advances in fuzzy set theory and applications.. North-Holland, Amsterdam, pp 303–320 [22] Torabi H, Behboodian J, Taheri SM (2006) Neyman–Pearson lemma for fuzzy hypotheses testing with vague data. Metrika 64: 289–304 · Zbl 1103.62021 [23] Torabi H, Behboodian J (2007) Likelihood ratio test for fuzzy hypotheses testing. Stat Pap 48: 509–522 · Zbl 1125.62009 [24] Torabi H, Behboodian J (2005) Sequential probability ratio test for fuzzy hypotheses testing with vague data. Austrian J Stat 34: 25–38 [25] Viertl R (1991) On Bayes’ theorem for fuzzy data. Stat Pap 32: 115–122 · Zbl 0719.62011 [26] Viertl R (1996) Statistical methods for non-precise data. CRC Press, Boca Raton, Florida · Zbl 1047.93534 [27] Viertl R (2006) Univariate statistical analysis with fuzzy data. Comput Stat Data Anal 51: 133–147 · Zbl 1157.62368 [28] Wang X, Kerre EE (2001) Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets Syst 118: 387–405 · Zbl 0971.03055 [29] Watanabe N, Imaizumi T (1993) A fuzzy statistical test of fuzzy hypotheses. Fuzzy Sets Syst 53: 167–178 · Zbl 0795.62025 [30] Yuan Y (1991) Criteria for evaluating fuzzy ranking methods. Fuzzy Sets Syst 43: 139–157 · Zbl 0747.90003 [31] Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338–359 · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.