## On the complex difference equation of hypergeometric type on non-uniform lattices.(English)Zbl 1440.39007

Summary: In this article, we obtain a new fundamental theorems for Nikiforov-Uvarov-Suslov complex difference equation of hypergeometric type by the method of Euler integral transformation, its expression is different from Suslov’s Theorem. We also establish the adjoint equation for Nikiforov-Uvarov-Suslov difference equation of hypergeometric type on non-uniform lattices, and prove it to be a difference equation of hypergeometric type on non-uniform lattices as well. The particular solutions of the adjoint equation are then obtained. As an appliction of these particular solutions, we use them to obtain the particular solutions for the original difference equation of hypergeometric type on non-uniform lattices and other important results.

### MSC:

 39A45 Difference equations in the complex domain 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.) 33E30 Other functions coming from differential, difference and integral equations 33E50 Special functions in characteristic $$p$$ (gamma functions, etc.)
Full Text:

### References:

  Álvarez Nodarse, R.; Cardoso, K. L., On the properties of special functions on the liear-type lattices, Journal of Mathematical Analysis Applications, 405, 271-285 (2011) · Zbl 1309.33019  Andrews, G. E.; Askey, R., Classical orthogonal polynomials, Polynomes Orthogonaux et Applications, 36-62 (1985), Berlin-Heidelberg-New York: Springer-Verlag, Berlin-Heidelberg-New York  Andrews, G. E.; Askey, R.; Roy, R., Special Functions, Encyclopedia of Mathematics and its Applications (1999), Cambridge: Cambridge University Press, Cambridge  Area, I.; Godoy, E.; Ronveaux, A., Hypergeometric-type differential equations: second kind solutions and related integrals, J. Comput. Appl. Math., 157, 93-106 (2003) · Zbl 1036.33005  Area, I.; Godoy, E.; Ronveaux, A., Hypergeometric type q-difference equations: Rodrigues type representation for the second kind solution, J. Comput. Appl. Math., 173, 81-92 (2005) · Zbl 1067.39033  Askey, R., Ismail, M. E. H.: Recurrence Relations, Continued Fractions, and Orthogonal Polynomials. Mem. Amer. Math. Soc., No. 300, 1984 · Zbl 0548.33001  Askey, R.; Wilson, J. A., A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols, SIAM J. Math. Anal., 10, 1008-1016 (1979) · Zbl 0437.33014  Askey, R., Wilson, J. A.: Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials. Mem. Amer. Math. Soc., No. 319, 1985 · Zbl 0572.33012  Atakishiyev, N. M.; Suslov, S. K., On the moments of classical and related polynomials, Revista Mexicana de Fisica, 34, 2, 147-151 (1988) · Zbl 1291.33007  Atakishiyev, N. M.; Suslov, S. K., About one class of special function, Revista Mexicana de Fisica, 34, 2, 152-167 (1988) · Zbl 1291.33006  Atakishiyev, N. M.; Suslov, S. K., Difference hypergeometric functions, Progress in Approximation Theory, 1-35 (1992), New York: Springer, New York · Zbl 0787.33003  Bangerezako, G., Variational calculus on q-nonuniform lattices, J. Math. Anal. Appl., 306, 161-179 (2005) · Zbl 1095.49005  Cheng, J.; Jia, L., Hypergeometric type difference equations on nonuniform lattices: Rodrigues type representation for the second kind solution, Acta Mathematics Scientia, 39A, 4, 875-893 (2019) · Zbl 1449.33011  Dreyfus, T., q-deformation of meromorphic solutions of linear differential equations, J. Differential Equations, 259, 5734-5768 (2015) · Zbl 1321.39011  Foupouagnigni, M., On difference equations for orthogonal polynomials on nonuniform lattices, J. Difference Equ. Appl., 14, 127174 (2008) · Zbl 1220.33017  Foupouagnigni, M.; Koepf, W.; Kenfack Nangho, K., On solutions of holonomic divided-difference equations on nonuniform lattices, Axioms, 2, 404434 (2013) · Zbl 1301.33024  George, G., Rahman, M.: Basic Hypergeometric Series, Second Edition, Cambridge University Press, 2004 · Zbl 1129.33005  Hille, E., Ordinary Differential Equations in the Complex Domain (1997), Mineola, NY: Dover Publications, Inc., Mineola, NY · Zbl 0901.34001  Horner, J. M., A Note on the derivation of Rodrigues’ formulae, The American Mathematical Monthly, 70, 81-82 (1963) · Zbl 0137.04704  Horner, J. M., Generalizations of the formulas of Rodrigues and Schlafli, The American Mathematical Monthly, 71, 870-876 (1963) · Zbl 0137.04705  Ince, E. L., Ordinary Differential Equations (1944), New York: Dover Publications, New York · Zbl 0063.02971  Ismail, M. E H.; Libis, C. A., Contiguous relations, basic hypergeometric functions, and orthogonal polynomials I, Journal of Mathematical Analysis and Applications, 141, 349-372 (1989) · Zbl 0681.33011  Jia, L.; Cheng, J.; Feng, Z., A q-analogue of Kummer’s equation, Electron J. Differential Equations, 2017, 1-20 (2017) · Zbl 1357.39008  Kac, V.; Cheung, P., Quantum Calculus (2002), New York: Springer-Verlag, New York  Koornwinder, T. H.: q-special functions, a tutorial, arXiv:math/9403216v2 · Zbl 0768.33018  Magnus, A. P., Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points, J. Comput. Appl. Math., 65, 253-265 (1995) · Zbl 0847.33008  Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B., Classical Orthogonal Polynomials of a Discrete Variable (1991), Berlin: Springer-Verlag, Berlin · Zbl 0743.33001  Nikiforov, A. F., Urarov, V. B.: Classical orthogonal polynomials of a discrete variable on non-uniform lattices, Akad. Nauk SSSR Inst. Prikl. Mat. Preprint No. 17, 1983  Nikiforov, A. F., Uvarov, V. B.: Special functions of mathematical physics: A unified introduction with applications, Translated from the Russian by Ralph P. Boas, Birkhauser Verlag, Basel, 1988  Robin, W., On the Rodrigues formula solution of the hypergeometric-type differential equation, International Mathematical Forum, 8, 1455-1466 (2013) · Zbl 1298.33018  Suslov, S. K., On the theory of difference analogues of special functions of hypergeometric type, Russian Math. Surveys, 44, 227-278 (1989) · Zbl 0685.33013  Swarttouw, R. F.; Meijer, H. G., A q-analogue of the Wronskian and a second solution of the Hahn-Exton q-Bessel difference equation, Proc. Am. Math. Soc., 120, 855-864 (1994) · Zbl 0822.33009  Wang, Z. X.; Guo, D. R., Special Functions (1989), Singapore: World Scientific Publishing, Singapore · Zbl 0724.33001  Witte, N. S., Semi-classical orthogonal polynomial systems on non-uniform lattices, deformations of the Askey table and analogs of isomonodromy, Nagoya Math. J., 219, 127-234 (2015) · Zbl 1334.39024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.