×

Multiperiod optimization model for oilfield production planning: bicriterion optimization and two-stage stochastic programming model. (English) Zbl 1439.90063

Summary: In this work, we present different tools of mathematical modeling that can be used in oil and gas industry to help improve the decision-making for field development, production optimization and planning. Firstly, we formulate models to compare simultaneous multiperiod optimization and sequential single period optimization for the maximization of net present value and the maximization of total oil production over long term time horizons. This study helps to identify the importance of multiperiod optimization in oil and gas production planning. Further, we formulate a bicriterion optimization model to determine the ideal compromise solution between maximization of the two objective functions, the net present value (NPV) and the total oil production. To account for the importance of hedging against uncertainty in the oil production, we formulate a two-stage stochastic programming model to compute an improved expected value of NPV and total oil production for uncertainties in oil prices and productivity indices.

MSC:

90C29 Multi-objective and goal programming
90C11 Mixed integer programming
90C15 Stochastic programming
90C90 Applications of mathematical programming

Software:

BARON; CONOPT; SNOPT; SBB
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Audet C, Savard G, Zghal W (2008) Multiobjective optimization through a series of single-objective formulations. SIAM J Optim 19(1):188-210. https://doi.org/10.1137/060677513 · Zbl 1167.90020 · doi:10.1137/060677513
[2] Awasthi U (2017) Optimization of production and gas lift for oil wells. M.S. Research Project, Carnegie Mellon University, Pittsburgh, USA
[3] Birge J, Louveaux FV (2011) Introduction to stochastic programming, 2nd edn. Springer, New York · Zbl 1223.90001 · doi:10.1007/978-1-4614-0237-4
[4] Bussieck MR, Drud A (2001) SBB: a new solver for mixed integer nonlinear programming. Talk, OR
[5] Camponogara E, Plucenio A, Teixeira AF, Campos SRV (2010) An automation system for gas-lifted oil wells: Model identification, control, and optimization. J Petrol Sci Eng 70(3-4):157-167. https://doi.org/10.1016/j.petrol.2009.11.003 · doi:10.1016/j.petrol.2009.11.003
[6] Darcy H (1856) Les fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau: ouvrage terminé par un appendice relatif aux fournitures d’eau de plusieurs villes au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tole et de bitume. Dalmont. Retrieved from https://books.google.com/books?id=42EUAAAAQAAJ
[7] Drud AS (1994) CONOPT—a large-scale GRG Code. ORSA J Comput 6(2):207-216. https://doi.org/10.1287/ijoc.6.2.207 · Zbl 0806.90113 · doi:10.1287/ijoc.6.2.207
[8] Freimer M, Yu L (1976) Some new results on compromise solutions for group decision problems. Manag Sci 22:628. https://doi.org/10.1287/mnsc.22.6.688 · Zbl 0365.90012 · doi:10.1287/mnsc.22.6.688
[9] Gilbert WE (1954) Flowing and gas-lift well performance. In: Drilling and production practice. American Petroleum Institute, New York
[10] Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979-1006 · Zbl 1027.90111 · doi:10.1137/S1052623499350013
[11] Gill PE, Murray W, Saunders MA (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99-131. https://doi.org/10.1137/S1052623499350013 · Zbl 1210.90176 · doi:10.1137/S1052623499350013
[12] Grossmann IE (2002) Review of nonlinear mixed-integer and disjunctive programming technique. Optim Eng. https://doi.org/10.1023/A:1021039126272 · Zbl 1035.90050 · doi:10.1023/A:1021039126272
[13] Grossmann IE, Drabbant R, Jain RK (1982) Incorporating toxicology in the synthesis of industrial chemical complexes. Chem Eng Commun 17:151-170. https://doi.org/10.1080/00986448208911622 · doi:10.1080/00986448208911622
[14] Grossmann IE, Apap RM, Calfa BA, García-Herreros P, Zhang Q (2016) Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty. Comput Chem Eng 91:3-14. https://doi.org/10.1016/j.compchemeng.2016.03.002 · doi:10.1016/j.compchemeng.2016.03.002
[15] Gunnerud V, Foss B (2010) Oil production optimization—a piecewise linear model, solved with two decomposition strategies. Comput Chem Eng 34(11):1803-1812. https://doi.org/10.1016/j.compchemeng.2009.10.019 · doi:10.1016/j.compchemeng.2009.10.019
[16] Gupta V (2013) Modeling and computational strategies for optimal oilfield development planning under fiscal rules and endogenous uncertainties. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, USA
[17] Gupta V, Grossmann IE (2012) An efficient multiperiod MINLP model for optimal planning of offshore oil and gas field infrastructure. Ind Eng Chem Res 51(19):6823-6840. https://doi.org/10.1021/ie202959w · doi:10.1021/ie202959w
[18] Hanes YY, Hall WA, Freedman HT (1975) Multiobjective optimization in water resource systems. Elsevier, Amsterdam
[19] Harding TJ, Radcliffe NJ, King PR (1996) Optimization of production strategies using stochastic search methods. In: European 3-D reservoir modeling conference. Society of Petroleum Engineers. https://doi.org/10.2118/35518-MS
[20] Isebor OJ, Durlofsky LJ (2014) Biobjective optimization for general oil field development. J Pet Sci Eng 119:123-138. https://doi.org/10.1016/j.petrol.2014.04.021 · doi:10.1016/j.petrol.2014.04.021
[21] Jansen J-D, Brouwer R, Douma SG (2009) Closed loop reservoir management. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, The Woodlands, TX. https://doi.org/10.2118/119098-MS
[22] Kosmidis VD, Perkins JD, Pistikopoulos EN (2005) A mixed integer optimization for the well scheduling problem on petroleum fields. Comput Chem Eng J 29:1523-1541. https://doi.org/10.1016/j.compchemeng.2004.12.003 · doi:10.1016/j.compchemeng.2004.12.003
[23] Lake LW, Liang X, Edgar TF, Al-Yousef A, Sayarpour M, Weber D (2007) Optimization of oil production based on a capacitance model of production and injection rates. Soc Pet Eng, SPE. https://doi.org/10.2118/107713-MS · doi:10.2118/107713-MS
[24] Mukherjee H, Brill JP (1999) Multiphase flow in wells, vol 17. Henry L. Doherty series, Monograph. Society of Petroleum Engineers Inc., Richardson
[25] Mundhada N (2016) Integration of reservoir modeling with oilfield planning and infrastructure optimization. M.S. Research Project, Carnegie Mellon University, Pittsburgh, USA
[26] Muskat M (1936) The Flow of homogeneous fluids through porous media. McGraw-Hill Book Co. Inc, New York City reprinted by SPE Richardson Texas (1982), copyrighted by Intl. Human Resources Development Corp., Boston (1982) · JFM 62.1565.01
[27] Sahinidis NV (1996) BARON: a general purpose global optimization software package. J Global Optim 8:201-205 · Zbl 0856.90104 · doi:10.1007/BF00138693
[28] Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28(6):971-983. https://doi.org/10.1016/j.compchemeng.2003.09.017 · doi:10.1016/j.compchemeng.2003.09.017
[29] Schlumberger Oilfield Glossary (2017) https://www.glossary.oilfield.slb.com/ (2002)
[30] Szilas AP (1975) Production and transportation of oil and gas, vol 3. Development in petroleum science. Elsevier, Amsterdam
[31] Tavallali MS, Karimi IA, Teo KM, Baxendale D, Ayatollahi S (2013) Optimal producer well placement and production planning in an oil reservoir. Comput Chem Eng 55:109-125. https://doi.org/10.1016/j.compchemeng.2013.04.002 · doi:10.1016/j.compchemeng.2013.04.002
[32] Verma K (2015) Integration of reservoir data with oilfield planning and infrastructure optimization. M.S. Research Project, Carnegie Mellon University, Pittsburgh, USA
[33] Yu PL (1973) A class of solutions for group decision problems. Manag Sci 19(936):1973 · Zbl 0264.90008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.