×

Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. (English) Zbl 1439.74338

Summary: In this paper, we investigate fracture in shells with a phase-field modeling approach. The shell model is based on solid-shell kinematics with small rotations and displacements and is discretized using quadratic Non-Uniform Rational B-Spline basis functions. Membrane and shear locking is alleviated through the Assumed Natural Strain approach. The solid-shell formulation is combined with a brittle phase-field model for elastic materials, as well as with a ductile fracture model for elasto-plastic materials exhibiting \(J_2\) plasticity with isotropic hardening. Several examples demonstrate the ability of the proposed framework to capture crack initiation, propagation, merging and branching phenomena as well as crack bulging effects in shells under different states of loading.

MSC:

74R10 Brittle fracture
65D07 Numerical computation using splines
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K25 Shells
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dolbow, J.; Moës, N.; Belytschko, T., Modeling fracture in Mindlin-Reissner plates with the extended finite element method, Int. J. Solids Struct., 37, 7161-7183 (1999) · Zbl 0993.74061
[2] Areias, P. M.A.; Belytschko, T., Non-linear analysis of shells with arbitrary evolving cracks using xfem, Int. J. Numer. Methods Eng., 62, 384-415 (2005) · Zbl 1080.74043
[3] Areias, P. M.A.; Song, J. H.; Belytschko, T., Analysis of fracture in thin shells by overlapping paired elements, Comput. Methods Appl. Mech. Engrg., 195, 5343-5360 (2006) · Zbl 1120.74048
[4] Nguyen-Thanh, N.; Valizadeh, N.; Nguyen, M. N.; Nguyen-Xuan, H.; Zhuang, X.; Areias, P.; Zih, G.; Bazilevs, Y.; De Lorenzis, L.; Rabczuk, T., An extended isogeometric thin shell analysis based on Kirchhoff-Love theory, Comput. Methods Appl. Mech. Engrg., 284, 265-291 (2015) · Zbl 1423.74811
[5] Larsson, R.; Mediavilla, J.; Fagerström, M., Dynamic fracture modeling in shell structures based on XFEM, Int. J. Numer. Methods Eng., 86, 499-527 (2011) · Zbl 1216.74025
[6] Mostofizadeh, S.; Fagerström, M.; Larsson, R., Dynamic crack propagation in elastoplastic thin-walled structures: modeling and validation, Int. J. Numer. Methods Eng., 96, 63-86 (2013) · Zbl 1352.74295
[7] Lua, J.; Zhang, T.; Fang, E.; Song, J. H., Explicit phantom paired shell element approach for crack branching and impact damage prediction of aluminum structures, Int. J. Impact Eng. (2015)
[8] Ahmed, A.; van der Meer, F. P.; Sluys, L. J., A geometrically nonlinear discontinuous solid-like shell element (DSLS) for thin shell structures, Comput. Methods Appl. Mech. Engrg., 201-204, 191-207 (2012) · Zbl 1239.74049
[9] Rabczuk, T.; Areias, P.; Belytschko, T., A meshfree thin shell method for nonlinear dynamic fracture, Int. J. Numer. Methods Eng., 72, 524-548 (2007) · Zbl 1194.74537
[10] Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S., Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells, Int. J. Numer. Methods Eng., 90, 707-738 (2012) · Zbl 1242.74204
[11] Cirak, F.; Ortiz, M.; Pandolfi, A., A cohesive approach to thin-shell fracture and fragmentation, Comput. Methods Appl. Mech. Engrg., 194, 2604-2618 (2005) · Zbl 1082.74052
[12] Zavattieri, P., Modeling of crack propagation in thin-walled structures using a cohesive model for shell elements, J. Appl. Mech., 73, 948-958 (2006) · Zbl 1111.74738
[13] Li, W.; Siegmund, T., An analysis of crack growth in thin-sheet metal via a cohesive zone model, Eng. Fract. Mech., 69, 2073-2093 (2002)
[14] Becker, G.; Geuzaine, C.; Noels, L., A one field full discontinuous galerkin method for Kirchhoff-Love shells applied to fracture mechanics, Comput. Methods Appl. Mech. Engrg., 200, 3223-3241 (2011) · Zbl 1230.74168
[15] Dimitri, R.; De Lorenzis, L.; Wriggers, P.; Zavarise, G., NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding, Comput. Mech., 54, 369-388 (2014) · Zbl 1398.74323
[16] Pagania, M.; Perego, U., Explicit dynamics simulation of blade cutting of thin elastoplastic shells using directional cohesive elements in solid-shell finite element models, Comput. Methods Appl. Mech. Engrg., 285, 515-541 (2015) · Zbl 1423.74688
[17] Rabczuk, T.; Areias, P., A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis, Comput. Model. Eng. Sci., 16, 115-130 (2006)
[18] Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2-15 (1977)
[19] Tvergaard, V.; Needleman, A., Analysis of the cup-cone fracture in a round tensile bar, Acta Metall., 32, 157-169 (1984)
[20] Lemaitre, J., A continuous damage mechanics model for ductile fracture, J. Eng. Mater. Technol., 107, 83-89 (1985)
[21] Baaser, H.; Gross, D., Damage and strain localisation during crack propagation in thin-walled shells, J. Phys. IV France, 8, 13-14 (1998)
[22] Areias, P.; Garção, J.; Pires, E. B.; Barbosa, J. I., Exact corotational shell for finite strains and fracture, Comput. Mech., 48, 385-406 (2011) · Zbl 1360.74133
[23] Woelke, P. B.; Abboud, N. N., Modeling fracture in large scale shell structures, J. Mech. Phys. Solids, 60, 2044-2063 (2012)
[24] Ren, B.; Li, S., Modeling and simulation of large-scale ductile fracture in plates and shells, Int. J. Solids Struct., 49, 2373-2393 (2012)
[25] Francfort, G. A.; Marigo, J. J., Revisiting brittle fractures as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319-1342 (1998) · Zbl 0966.74060
[26] Bourdin, B.; Francfort, G. A.; Marigo, J. J., The variational approach to fracture, J. Elasticity, 91, 5-148 (2008) · Zbl 1176.74018
[27] Bourdin, B.; Francfort, G. A.; Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826 (2000) · Zbl 0995.74057
[28] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 1209-1229 (2009) · Zbl 1426.74257
[29] Kuhn, C.; Müller, R., A continuum phase field model for fracture, Eng. Fract. Mech., 77, 3625-3634 (2010)
[30] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778 (2010) · Zbl 1231.74022
[31] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[32] Gerasimov, T.; De Lorenzis, L., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg. (2016) · Zbl 1439.74349
[33] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383-405 (2014) · Zbl 1398.74270
[34] Duda, F. P.; Ciarbonetti, A.; Sanchez, P. J.; Huespe, A. E., A phase-field/gradient damage model for brittle fracture in elastic-plastic solids, Int. J. Plast., 65, 269-296 (2014)
[35] Borden, M. J., Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture (2012), The University of Texas at Austin, (Ph.D. dissertation)
[36] Miehe, C.; Hofacker, M.; Schänzel, L.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2014) · Zbl 1423.74837
[37] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 1017-1040 (2015) · Zbl 1329.74018
[38] Alessi, R.; Marigo, J. J.; Vidoli, S., Gradient damage models coupled with plasticity: variational formulation and main properties, Mech. Mater., 80, 351-367 (2015)
[39] Wick, D.; Wick, T.; Hellmig, R. J.; Christ, H. J., Numerical simulations of crack propagation in screws with phase-field modeling, Comput. Mater. Sci., 109, 367-379 (2015)
[40] Ambati, M.; Kruse, R.; De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput. Mech., 57, 149-167 (2016) · Zbl 1381.74181
[41] Ulmer, H.; Hofacker, M.; Miehe, C., Phase field modeling of fracture in plates and shells, Proc. Appl. Math. Mech., 12, 171-172 (2012)
[42] Amiri, F.; Millan, D.; Shen, Y.; Rabczuk, T.; Arroyo, M., Phase-field modeling of fracture in linear thin shells, Theor. Appl. Fract. Mech., 69, 102-109 (2014)
[43] Hauptmann, R.; Schweizerhof, K., A systematic development of solid-shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom, Int. J. Numer. Methods Eng., 42, 49-69 (1998) · Zbl 0917.73067
[44] Hauptmann, R.; Doll, S.; Harnau, M.; Schweizerhof, K., Solid-shell elements with linear and quadratic shape functions at large deformations with nearly incompressible materials, Comput. Struct., 79, 1671-1685 (2001)
[45] Valente, R. A.F.; Alves De Sousa, R. J.; Natal Jorge, R. M., An enhanced strain 3D element for large deformation elastoplastic thin-shell applications, Comput. Mech., 34, 38-52 (2004) · Zbl 1141.74367
[46] Alves de Sousa, R. J.; Cardoso, R. P.R.; Valente, R. A.F.; Yoon, J. W.; Grácio, J. J.; Jorge, R. M.N., A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness-Part II: Nonlinear applications, Int. J. Numer. Methods Eng., 67, 160-188 (2006) · Zbl 1110.74840
[47] Schwarze, M.; Reese, S., A reduced integration solid-shell finite element based on the EAS and the ANS concepts: Geometrically linear problems, Int. J. Numer. Methods Eng., 80, 1322-1355 (2009) · Zbl 1183.74315
[48] Reese, S., A large deformation solid-shell concept based on reduced integration with hourglass stabilization, Int. J. Numer. Methods Eng., 69, 1671-1716 (2007) · Zbl 1194.74469
[49] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[50] Caseiro, J. F.; Valente, R. A.F.; Reali, A.; Kiendl, J.; Auricchio, F.; Alves de Sousa, R. J., On the assumed natural strain method to alleviate locking in solid-shell NURBS-based finite elements, Comput. Mech., 53, 1341-1353 (2014) · Zbl 1298.74226
[51] Caseiro, J. F.; Valente, R. A.F.; Reali, A.; Kiendl, J.; Auricchio, F.; Alves de Sousa, R. J., Assumed natural strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures, Comput. Methods Appl. Mech. Engrg., 284, 861-880 (2015) · Zbl 1423.74167
[52] Valente, R. A.F., Developments on shell and solid-shell finite elements technology in nonlinear continuum mechanics (2004), University of Porto, (Ph.D. dissertation)
[53] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), John Wiley & Sons Ltd.: John Wiley & Sons Ltd. England · Zbl 0959.74001
[54] Bucalem, M. L.; Bathe, K.-J., Higher-order MITC general shell elements, Int. J. Numer. Methods Eng., 36, 3729-3754 (1993) · Zbl 0800.73466
[55] Caseiro, J. F., Numerical tools for isogeometric analysis in the nonlinear regime (2014), Universidade de Aveiro: Universidade de Aveiro Portugal, (Ph.D. dissertation)
[56] Neto, E.d. S.; Perić, D.; Owen, D. R.J., Computational Methods for Plasticity (2008), John Wiley & Sons Ltd.
[57] Armero, F.; Ehrlich, D., Finite element methods for the multi-scale modeling of softening hinge lines in plates at failure, Comput. Methods Appl. Mech. Engrg., 195, 1283-1324 (2006) · Zbl 1129.74043
[58] Keesecker, A. L.; Davila, C. G.; Johnson, E. R.; Starnes, J. H., Crack path bifurcation at a tear strap in a pressurized shell, Comput. Struct., 81, 1633-1642 (2003)
[59] Kosai, M.; Shimamoto, A.; Yu, C. T.; Kobayashi, A. S.; Tan, P. W., Axial crack propagation and arrest in a pressurized cylinder: An experimental-numerical analysis, Exp. Mech., 39, 256-264 (1999)
[60] Areias, P.; Rabczuk, T., Finite strain fracture of plates and shells with configurational forces and edge rotations, Int. J. Numer. Methods Eng., 94, 1099-1122 (2013) · Zbl 1352.74316
[61] J.E. Ash, T.J. Marciniak, Comparisons of finite-element code calculations to hydrostatically-loaded subassembly duct experiments, Technical Report ANL/RAS 75-31, Argonne National Laboratory, Reactor Analysis and Safety Division, 9700 South Cass Avenue, Argonne, Illinois 60439, 1975.; J.E. Ash, T.J. Marciniak, Comparisons of finite-element code calculations to hydrostatically-loaded subassembly duct experiments, Technical Report ANL/RAS 75-31, Argonne National Laboratory, Reactor Analysis and Safety Division, 9700 South Cass Avenue, Argonne, Illinois 60439, 1975.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.