×

A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads. (English) Zbl 1439.74187

Summary: In this work, we report a computational study on Peridynamics modeling and simulation of soil fragmentation under buried explosive loads. We have implemented several geomaterial models of soil in the state-based Peridynamics formulation, which can take into account of the effects of strain softening, viscoplasticity, and porosity of soil. Moreover, we adopted a particle decohesion algorithm in the state-based Peridynamics for finite deformation to simulate soil fragmentation. A key technical ingredient of the simulation is the coupling between soil and explosive modeling methods, which is accomplished by coupling the state-based Peridynamics (soil) model with a modified smooth particle hydrodynamics (SPH) model (explosive). The modified SPH formulation used here is a non-local consistent particle dynamics that is formulated in the current (spatial) configuration. Numerical results of the simulations are compared with the measured experimental data. It has been found that there is a general agreement between the simulation results and the experimental data, and the computational model developed here has shown certain predictive capacity.

MSC:

74L10 Soil and rock mechanics
74J40 Shocks and related discontinuities in solid mechanics
74E20 Granularity
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Drake, J. L.; Little Jr., C. D., Ground Shock from Penetrating Conventional Weapons, Technical Report (1983), Army Engibeer Waterways Experiment Station: Army Engibeer Waterways Experiment Station Vicksburg, MS
[2] J. Wang, Simulation of a landmine explosion using LS-DYNA3D software, No. DSTO-TR116, Defence Science and Technology Organization Canberra (Australia), (2001); J. Wang, Simulation of a landmine explosion using LS-DYNA3D software, No. DSTO-TR116, Defence Science and Technology Organization Canberra (Australia), (2001)
[3] Wang, Z.; Lu, Y., Numerical analysis on dynamic deformation mechanism of soils under blast loading, Soil Dyn. Earthq. Eng., 23, 705-714 (2003)
[4] Wang, Y. Lu. Z.; Chong, K., A comparative study of buried structure in soil subjected to blast load using 2d and 3d numerical simulations, Soil Dyn. Earthq. Eng., 25, 275-288 (2005)
[5] Tong, X.; Tuan, C. Y., Viscoplastic cap model for soils under high strain rate loading, J. Geotech. Geoenviron. Eng., 133, 2, 206-214 (2007)
[6] Wang, Z.; Bai, Y. Lu. C., Numerical analysis of blast-induced liquefaction of soil, Comput. Geotech., 35, 196-209 (2008)
[7] Grujicic, M.; Pandurangan, B.; Qiao, R.; Cheeseman, B. A.; Roy, W. N.; Skaggs, R. R.; Gupta, R., Parameterization of the porous-material model for sand with different levels of water saturation, Soil Dyn. Earthq. Eng., 28, 20-35 (2008)
[8] Wang, Z. L.; Konietzky, H.; Shen, R. F., Coupled finite element and discrete element method for underground blast in faulted rock masses, Soil Dyn. Earthq. Eng., 29, 939-945 (2009)
[9] Watts, C. W.; Tarquis, A. M.; Bird, N. R.A.; Whitmore, A. P., Modeling dynamic fragmentation of soil, Vadose Zone J., 8, 197-201 (2009)
[10] An, J.; Tuan, C. Y.; Asce, F.; Cheeseman, B. A.; Gazonas, G. A., Simulation of soil behavior under blast loading, Int. J. Geomech., 11, 323-334 (2011)
[11] Wang, Z.; Lu, Y.; Bai, C., Numerical simulation of explosion-induced soil liquefaction and its effect on surface structures, Finite Elem. Anal. Des., 47, 1079-1090 (2011)
[12] Charlie, W. A.; Bretz, T. E.; (white), L. A. Schure; Doehring, D. O., Blast-induced pore pressure and liquefaction of saturated sand, ASCE J. Geotech. Geoenviron. Eng., 139, 8, 1308-1319 (2013)
[13] Deshpande, V. S.; McShane, G. J.; Fleck, N. A., A laboratory-scale buried charge simulator, Int. J. Impact Eng., 62, 210-218 (2013)
[14] Schumaker, M. G.; Borg, J. P.; Kennedy, G.; Thadhani, N. N., Mesoscale simulations of dry sand, (Dynamic Behavior of Materials, vol. 1 (2015)), 379-388
[15] Crull, M. M., Buried Explosion Module(Bem): A Method for Determining the Fragment Hazards Due To Detonation of a Burid Munition, Technical Report (1998), U.S. Army Engineering & Support Center: U.S. Army Engineering & Support Center Huntsville
[16] Wang, Z.; Lu, Y.; Hao, H., Numerical investigation of effects of water saturation on blast wave propagation in soil mass, J. Eng. Mech., 130, 551-561 (2004)
[17] Ren, B.; Fan, H.; Bergel, G. L.; Regueiro, R. A.; Lai, X.; Li, S., A Peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves, Comput. Mech., 55, 287-302 (2015) · Zbl 1398.74395
[18] Lai, X.; Ren, B.; Fan, H.; Li, S.; Wu, C. T.; Richard, A. R.; Liu, L., Peridynamics simulations of geomaterial fragmentation by impulse loads, Int. J. Numer. Anal. Methods Geomech., 39, 189-213 (2015)
[19] Fan, H.; Bergel, G. L.; Li, S., A hybrid peridynamics-sph simulation of soil fragmentation by blast loads of buried explosive, Int. J. Impact Eng., 87, 14-27 (2015)
[20] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175-209 (2000) · Zbl 0970.74030
[21] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elasticity, 88, 151-184 (2007) · Zbl 1120.74003
[22] Drucker, D. C.; Prager, W., Soil mechanics and plastic analysis or limit design, Quart. Appl. Math., 10, 157-165 (1952) · Zbl 0047.43202
[23] Resende, L.; Martin, J. B., Formulation of Drucker-Prager cap model, J. Engrg. Mech., 111, 7, 855-881 (1985)
[24] B. Banerjee, R. Brannon, ONR-MURI Geomaterial Simulation Update Reports, (2015)-(2016); B. Banerjee, R. Brannon, ONR-MURI Geomaterial Simulation Update Reports, (2015)-(2016)
[25] Brannon, R. M.; Fossum, A. F.; Strack, O. E., KAYENTA: Theory and User’s Guide, Technical Report (2009), Sandia National Laboratories at Albuquerque: Sandia National Laboratories at Albuquerque NM and Livermore, CA
[26] Brannon, R. M.; Homel, M.; Ghodrati, E., Arena: Theory and User’s Guide, Technical Report (2014), Department of Mechanical Engineering, University of Utah: Department of Mechanical Engineering, University of Utah Salt Lake City, UT
[27] Bergel, G. L.; Li, S., The total and updated Lagrangian formulation of state-based peridynamics, Comput. Mech., 58, 351-370 (2016) · Zbl 1398.74303
[28] Li, S.; Liu, W. K., Reproducing kernel hierarchical partition of unity Part I: Formulations, Internat. J. Numer. Methods Engrg., 45, 251-288 (1999) · Zbl 0945.74079
[29] Li, S.; Liu, W. K., Reproducing kernel hierarchical partition of unity Part II: Applications, Internat. J. Numer. Methods Engrg., 45, 289-300 (1999)
[30] Liu, W.-K.; Li, S.; Belytschko, T., Moving least square reproducing kernel method. (I) Methodology and convergence, Comput. Methods Appl. Mech. Engrg., 143, 113-154 (1997) · Zbl 0883.65088
[31] Radjai, F.; Dubois, F., Discrete-Element Modeling of Granular Materials (2011), Wiley-Iste
[32] Luding, S., Cohesive, frictional powders: Contact models for tension, Granular Matter, 10, 4, 235-246 (2008) · Zbl 1304.74019
[33] Liu, G. R.; Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method (2003), World Scientific · Zbl 1046.76001
[34] Fulk, D. A., A Numerical Analysis of Smoothed Particle Hydrodynamics, (Ph.D. thesis) (1994), Air Force Institute of Technology
[35] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 12-14, 1035-1063 (2004) · Zbl 1060.74672
[36] Monagphan, J. J., Simulating free surface flows with SPH, J. Comput. Phys., 110, 2, 339-406 (1994) · Zbl 0794.76073
[37] Liu, M. B.; Liu, G. R.; Lam, K. Y.; Zong, Z., Smoothed particle hydrodynamics for numerical simulation of underwater explosion, Comput. Mech., 30, 2, 106-118 (2003) · Zbl 1128.76352
[38] Dooge, D.; Dwarampudi, R.; Schaffner, G.; Miller, A., Evolution of occupant survivability simulation framwork using FEM-SPH coupling, (2011 NDIA Ground Vehicle Systems Engineering and Technology Symposium (2011), Dearborn: Dearborn Michigan)
[39] Warren, T. L.; Silling, S. A.; Askari, A.; Weckner, O.; Epton, M. A.; Xu, J., A non-ordinary state-based peridynamic method to model solid material deformation and fracture, Int. J. Solids Struct., 46, 5, 1186-1195 (2009) · Zbl 1236.74012
[40] Foster, J. T.; Silling, S. A.; Chen, W. W., Viscoplasticity using peridynamics, Internat. J. Numer. Methods Engrg., 81, 10, 1242-1258 (2010) · Zbl 1183.74035
[41] Tupek, M. R.; Rimoli, J. J.; Radovitzky, R., An approach for incorporating classical continuum damage models in state-based peridynamics, Comput. Methods Appl. Mech. Engrg., 263, 20-26 (2013) · Zbl 1286.74022
[42] Han, L. H.; Elliott, J. A.; Bentham, A. C.; Mills, A.; Amidon, G. E.; Hancock, B. C., A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders, Int. J. Solids Struct., 45, 3088-3106 (2008) · Zbl 1169.74367
[43] Bergeron, D.; Walker, R.; Coffey, C., Detonation of 100-Gram Anti-Personnel Mine Surrogate Charges in Sand-a Test Case for Computer Code Validation, Technical Report (1998), Defence Research Establishment Suffield, Ralston ALTA (CAN)
[44] Homel, M. A.; Brannon, R. M.; Guilkey, J. E., Simulation of shaped-charge jet penetration into drained and undrained sandstone using the material point method with new approaches for constitutive modeling, (International Center for Numerical Methods in Engineering (2014))
[45] Jensen, E., Arenisca: Overview, ABAQUS Implementation and Parameter Calibration, Research Notes (2014)
[46] Homel, M. A.; Guilkey, J. E.; Brannon, R. M., Continuum effective-stress approach for high-rate plastic deformation of fluid-saturated geomaterials with application to shaped-charge jet penetration, Acta Mech., 227, 2, 279-310 (2016)
[47] Borja, R. I., Cam-Clay Plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media, Comput. Methods Appl. Mech. Engrg., 193, 5301-5338 (2004) · Zbl 1112.74430
[48] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1997), Springer · Zbl 0934.74003
[49] Hughes, T. J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Internat. J. Numer. Methods Engrg., 15, 1862-1867 (1980) · Zbl 0463.73081
[50] Kilic, B.; Madenci, E., An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theor. Appl. Fract. Mech., 53, 194-204 (2010)
[51] Regueiro, R., CVEN 6511 Lecture Notes: Nonlinear Finite Element Analysis of Solids and Porous Media (2007), CU Boulder, University Lecture
[52] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2000), Wiley: Wiley Chicjester · Zbl 0980.74001
[53] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics, IBM J., 11, 215-234 (1967) · Zbl 0145.40402
[54] Chandra, R., Parallel Programming in OpenMp (2001), Morgan Kaufmann
[55] Fan, H.; Li., S., Parallel Peridynamics-SPH simulation of soil fragmentation by using OpenMP, Comput. Part. Mech. (2016), online
[56] K. Sternik, F. Darve, Constitutive models for predicting liquefaction of soils, 18me Congrs Franais de Mcanique, Grenoble, 2007; K. Sternik, F. Darve, Constitutive models for predicting liquefaction of soils, 18me Congrs Franais de Mcanique, Grenoble, 2007
[57] Hansen, C.; Pak, R. Y., Centrifuge characterization of buried, explosive-induced soil ejecta kinematics and crater morphology, J. Dyn. Behav. Mater., 1-20 (2016), Online
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.