zbMATH — the first resource for mathematics

A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. (English) Zbl 1439.74014
Summary: A new data-driven computational framework is developed to assist in the design and modeling of new material systems and structures. The proposed framework integrates three general steps: (1) design of experiments, where the input variables describing material geometry (microstructure), phase properties and external conditions are sampled; (2) efficient computational analyses of each design sample, leading to the creation of a material response database; and (3) machine learning applied to this database to obtain a new design or response model. In addition, the authors address the longstanding challenge of developing a data-driven approach applicable to problems that involve unacceptable computational expense when solved by standard analysis methods – e.g. finite element analysis of representative volume elements involving plasticity and damage. In these cases the framework includes the recently developed “self-consistent clustering analysis” method in order to build large databases suitable for machine learning. The authors believe that this will open new avenues to finding innovative materials with new capabilities in an era of high-throughput computing (“big-data”).

74A20 Theory of constitutive functions in solid mechanics
74Sxx Numerical and other methods in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI
[1] Meyers, M. A.; Chen, P.-Y.; Lin, A. Y.-M.; Seki, Y., Biological materials: Structure and mechanical properties, Prog. Mater. Sci., 53, 1, 1-206 (2008)
[2] Jang, D.; Meza, L. R.; Greer, F.; Greer, J. R., Fabrication and deformation of three-dimensional hollow ceramic nanostructures, Nat. Mater., 12, 10, 893-898 (2013)
[3] Wang, P.; Casadei, F.; Shan, S.; Weaver, J. C.; Bertoldi, K., Harnessing buckling to design tunable locally resonant acoustic metamaterials, Phys. Rev. Lett., 113, 014301 (2014)
[4] Fröhlich, J.; Niedermeier, W.; Luginsland, H.-D., The effect of filler-filler and filler-elastomer interaction on rubber reinforcement, Composites A, 36, 4, 449-460 (2005)
[5] Heinrich, G.; Klüppel, M.; Vilgis, T. A., Reinforcement of elastomers, Curr. Opin. Solid State Mater. Sci., 6, 3, 195-203 (2002)
[6] Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R. E., Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater., 40, 17, 1511-1575 (2006)
[7] Lee, L. J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G., Polymer nanocomposite foams, Compos. Sci. Technol., 65, 15-16, 2344-2363 (2005)
[8] Tjong, S., Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties, Adv. Energy Mater., 9, 8, 639-652 (2007)
[9] Swolfs, Y.; Gorbatikh, L.; Verpoest, I., Fibre hybridisation in polymer composites: A review, Composites A, 67, 181-200 (2014)
[10] Tavares, R.; Melro, A.; Bessa, M. A.; Turon, A.; Liu, W. K.; Camanho, P., Mechanics of hybrid polymer composites: analytical and computational study, Comput. Mech., 57, 3, 405-421 (2016)
[11] Yvonnet, J.; Gonzalez, D.; He, Q.-C., Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 198, 33-36, 2723-2737 (2009)
[12] Clément, A.; Soize, C.; Yvonnet, J., Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis, Internat. J. Numer. Methods Engrg., 91, 8, 799-824 (2012)
[13] Yvonnet, J.; Monteiro, E.; He, Q.-C., Computational homogenization method and reduced database model for hyperelastic heterogeneous structures, Int. J. Multiscale Comput. Eng., 11, 3, 201-225 (2013)
[14] Le, B.; Yvonnet, J.; He, Q.-C., Computational homogenization of nonlinear elastic materials using neural networks, Internat. J. Numer. Methods Engrg., 104, 12, 1061-1084 (2015)
[15] Kirchdoerfer, T.; Ortiz, M., Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg., 304, 81-101 (2016)
[16] Sigmund, O., Materials with prescribed constitutive parameters: An inverse homogenization problem, Int. J. Solids Struct., 31, 17, 2313-2329 (1994)
[17] Sigmund, O., A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[18] Bendsoe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2013), Springer Science & Business Media
[19] Gürdal, Z.; Haftka, R. T.; Hajela, P., Design and Optimization of Laminated Composite Materials (1999), John Wiley & Sons
[20] Deb, K.; Gulati, S., Design of truss-structures for minimum weight using genetic algorithms, Finite Elem. Anal. Des., 37, 5, 447-465 (2001), Genetic algorithms and finite elements in engineering
[21] Ning, X.; Pellegrino, S., Imperfection-insensitive axially loaded thin cylindrical shells, Int. J. Solids Struct., 62, 39-51 (2015)
[22] Xu, H.; Li, Y.; Brinson, C.; Chen, W., A descriptor-based design methodology for developing heterogeneous microstructural materials system, J. Mech. Des., 136, 5, 051007 (2014)
[23] Xu, H.; Liu, R.; Choudhary, A.; Chen, W., A machine learning-based design representation method for designing heterogeneous microstructures, J. Mech. Des., 137, 5, 051403 (2015)
[24] Zhang, Y.; Zhao, H.; Hassinger, I.; Brinson, L. C.; Schadler, L. S.; Chen, W., Microstructure reconstruction and structural equation modeling for computational design of nanodielectrics, Integ. Mater. Manuf. Innov., 4, 1, 14 (2015)
[25] Bostanabad, R.; Bui, A. T.; Xie, W.; Apley, D. W.; Chen, W., Stochastic microstructure characterization and reconstruction via supervised learning, Acta Mater., 103, 89-102 (2016)
[26] Simpson, T. W.; Lin, D. K.; Chen, W., Sampling strategies for computer experiments: design and analysis, Int. J. Reliab. Appl., 2, 3, 209-240 (2001)
[27] Fang, K.-T.; Li, R.; Sudjianto, A., Design and Modeling for Computer Experiments (2005), CRC Press
[28] Jourdan, A.; Franco, J., Optimal Latin hypercube designs for the Kullback-Leibler criterion, AStA Adv. Stat. Anal., 94, 4, 341-351 (2010)
[29] Santiago, J.; Claeys-Bruno, M.; Sergent, M., Construction of space-filling designs using {WSP} algorithm for high dimensional spaces, Chemometr. Intell. Lab. Syst., 113, 26-31 (2012)
[30] Faure, H., Discrépance de suites associées à un système de numération (en dimension s), Acta Arith., 41, 4, 337-351 (1982)
[31] Hammersley, J. M., Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci., 86, 3, 844-874 (1960)
[32] Sobol, I. M., On the distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. Mat. Fiz., 7, 4, 784-802 (1967)
[33] Sobol, I. M., Uniformly distributed sequences with an additional uniform property, USSR Comput. Math. Math. Phys., 16, 5, 236-242 (1976)
[34] Bates, R.; Buck, R.; Riccomagno, E.; Wynn, H., Experimental design and observation for large systems, J. R. Stat. Soc. Ser. B Stat. Methodol., 77-94 (1996)
[35] McKay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 42, 1, 55-61 (2000)
[36] Jin, R.; Chen, W.; Sudjianto, A., An efficient algorithm for constructing optimal design of computer experiments, J. Statist. Plann. Inference, 134, 1, 268-287 (2005)
[37] Owen, A. B., Orthogonal arrays for computer experiments, integration and visualization, Statist. Sinica, 439-452 (1992)
[38] Petelet, M.; Iooss, B.; Asserin, O.; Loredo, A., Latin hypercube sampling with inequality constraints, AStA Adv. Stat. Anal., 94, 4, 325-339 (2010)
[39] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 2, 229-256 (1994)
[40] Bessa, M.; Foster, J.; Belytschko, T.; Liu, W., A meshfree unification: reproducing kernel peridynamics, Comput. Mech., 53, 6, 1251-1264 (2014)
[41] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 8-9, 1081-1106 (1995)
[42] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005)
[43] Melro, A.; Camanho, P.; Pires, F. A.; Pinho, S., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part {II} - Micromechanical analyses, Int. J. Solids Struct., 50, 11-12, 1906-1915 (2013)
[44] Bai, X.; Bessa, M.; Melro, A.; Camanho, P.; Guo, L.; Liu, W., High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites, Compos. Struct. (2015)
[45] Bessa, M. A., Data-Driven Multi-Scale Analyses of Materials and Structures, (Ph.D. thesis) (2016), Northwestern University
[46] Liu, Z.; Bessa, M.; Liu, W. K., Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 306, 319-341 (2016)
[47] Moore, J. A.; Ma, R.; Domel, A. G.; Liu, W. K., An efficient multiscale model of damping properties for filled elastomers with complex microstructures, Composites B, 62, 262-270 (2014)
[48] Liu, Z.; Moore, J. A.; Liu, W. K., An extended micromechanics method for probing interphase properties in polymer nanocomposites, J. Mech. Phys. Solids, 95, 663-680 (2016)
[49] Dvorak, G. J., Transformation field analysis of inelastic composite materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 437, 1900, 311-327 (1992)
[50] Michel, J.; Suquet, P., Nonuniform transformation field analysis, Int. J. Solids Struct., 40, 25, 6937-6955 (2003)
[51] Karhunen, K., Zur spektraltheorie stochastischer prozesse (1946), Suomalainen tiedeakatemia
[52] Loève, M., Probability Theory; Foundations, Random Sequences (1955), D. Van Nostrand Company: D. Van Nostrand Company New York
[53] Jolliffe, I., Principal Component Analysis (2002), Wiley Online Library
[54] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 1, 539-575 (1993)
[55] Yvonnet, J.; He, Q.-C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223, 1, 341-368 (2007)
[56] Ladevèze, P.; Passieux, J.-C.; Néron, D., The {LATIN} multiscale computational method and the Proper Generalized Decomposition, Comput. Methods Appl. Mech. Engrg., 199, 21-22, 1287-1296 (2010)
[57] Chinesta, F.; Ammar, A.; Leygue, A.; Keunings, R., An overview of the proper generalized decomposition with applications in computational rheology, J. Non-Newton. Fluid Mech., 166, 11, 578-592 (2011)
[58] Chaboche, J.; Kanouté, P.; Roos, A., On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites, Int. J. Plast., 21, 7, 1409-1434 (2005)
[59] Oskay, C.; Fish, J., Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 196, 7, 1216-1243 (2007)
[60] Fish, J., Practical Multiscaling (2013), John Wiley & Sons
[61] Krysl, P.; Lall, S.; Marsden, J., Dimensional model reduction in non-linear finite element dynamics of solids and structures, Internat. J. Numer. Methods Engrg., 51, 4, 479-504 (2001)
[62] Goury, O.; Amsallem, D.; Bordas, S. P.A.; Liu, W. K.; Kerfriden, P., Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to bayesian optimization, Comput. Mech., 58, 2, 213-234 (2016)
[63] Chinesta, F.; Leygue, A.; Bordeu, F.; Aguado, J. V.; Cueto, E.; Gonzalez, D.; Alfaro, I.; Ammar, A.; Huerta, A., PGD-Based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., 20, 1, 31-59 (2013)
[64] Reichhardt, T., It’s sink or swim as a tidal wave of data approaches, Nature, 399, 6736, 517-520 (1999)
[65] Lynch, C., Big data: How do your data grow?, Nature, 455, 7209, 28-29 (2008)
[66] Los, W.; Wood, J., Dealing with data: Upgrading infrastructure, Science, 331, 6024, 1515-1516 (2011)
[67] Mattmann, C. A., Computing: A vision for data science, Nature, 493, 7433, 473-475 (2013)
[68] Mitchell, T. M., Mining our reality, Science, 326, 5960, 1644-1645 (2009)
[69] Sachidanandam, R.; Weissman, D.; Schmidt, S. C.; Kakol, J. M.; Stein, L. D.; Marth, G.; Sherry, S.; Mullikin, J. C.; Mortimore, B. J.; Willey, D. L., A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms, Nature, 409, 6822, 928-933 (2001)
[70] Akil, H.; Martone, M. E.; Van Essen, D. C., Challenges and opportunities in mining neuroscience data, Science, 331, 6018, 708-712 (2011)
[71] Bellazzi, R.; Zupan, B., Predictive data mining in clinical medicine: current issues and guidelines, International journal of medical informatics, 77, 2, 81-97 (2008)
[72] Buonamici, S.; Trimarchi, T.; Ruocco, M. G.; Reavie, L.; Cathelin, S.; Mar, B. G.; Klinakis, A.; Lukyanov, Y.; Tseng, J.-C.; Sen, F., CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia, Nature, 459, 7249, 1000-1004 (2009)
[73] Hanash, S. M.; Pitteri, S. J.; Faca, V. M., Mining the plasma proteome for cancer biomarkers, Nature, 452, 7187, 571-579 (2008)
[74] Shlush, L. I.; Zandi, S.; Mitchell, A.; Chen, W. C.; Brandwein, J. M.; Gupta, V.; Kennedy, J. A.; Schimmer, A. D.; Schuh, A. C.; Yee, K. W., Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia, Nature, 506, 7488, 328-333 (2014)
[75] Hehemann, J.-H.; Correc, G.; Barbeyron, T.; Helbert, W.; Czjzek, M.; Michel, G., Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota, Nature, 464, 7290, 908-912 (2010)
[76] Warnecke, F.; Luginbühl, P.; Ivanova, N.; Ghassemian, M.; Richardson, T. H.; Stege, J. T.; Cayouette, M.; McHardy, A. C.; Djordjevic, G.; Aboushadi, N., Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite, Nature, 450, 7169, 560-565 (2007)
[77] Vinayagam, A.; Hu, Y.; Kulkarni, M.; Roesel, C.; Sopko, R.; Mohr, S. E.; Perrimon, N., Protein complex-Based Analysis Framework for High-Throughput Data Sets, Science Signaling, 6, 264, rs5 (2013)
[78] Besnard, J.; Ruda, G. F.; Setola, V.; Abecassis, K.; Rodriguiz, R. M.; Huang, X.-P.; Norval, S.; Sassano, M. F.; Shin, A. I.; Webster, L. A., Automated design of ligands to polypharmacological profiles, Nature, 492, 7428, 215-220 (2012)
[79] Tatonetti, N. P.; Ye, P. P.; Daneshjou, R.; Altman, R. B., Data-driven prediction of drug effects and interactions, Sci. Transl. Med., 4, 125, 125ra31 (2012)
[80] Cully, A.; Clune, J.; Tarapore, D.; Mouret, J.-B., Robots that can adapt like animals, Nature, 521, 7553, 503-507 (2015)
[81] Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M., Mastering the game of go with deep neural networks and tree search, Nature, 529, 7587, 484-489 (2016)
[82] Whelan, R.; Watts, R.; Orr, C. A.; Althoff, R. R.; Artiges, E.; Banaschewski, T.; Barker, G. J.; Bokde, A. L.; Büchel, C.; Carvalho, F. M., Neuropsychosocial profiles of current and future adolescent alcohol misusers, Nature, 512, 7513, 185-189 (2014)
[83] Chavez, E.; Conway, G.; Ghil, M.; Sadler, M., An end-to-end assessment of extreme weather impacts on food security, Nature Clim. Change, 5, 11, 997-1001 (2015)
[84] Yoon, C. E.; O’Reilly, O.; Bergen, K. J.; Beroza, G. C., Earthquake detection through computationally efficient similarity search, Sci. Adv., 1, 11, e1501057 (2015)
[85] Einav, L.; Levin, J., Economics in the age of big data, Science, 346, 6210 (2014)
[86] Curtarolo, S.; Morgan, D.; Persson, K.; Rodgers, J.; Ceder, G., Predicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett., 91, 135503 (2003)
[87] Fischer, C. C.; Tibbetts, K. J.; Morgan, D.; Ceder, G., Predicting crystal structure by merging data mining with quantum mechanics, Nat. Mater., 5, 8, 641-646 (2006)
[88] Curtarolo, S.; Hart, G. L.; Nardelli, M. B.; Mingo, N.; Sanvito, S.; Levy, O., The high-throughput highway to computational materials design, Nat. Mater., 12, 3, 191-201 (2013)
[89] Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J., Machine-learning-assisted materials discovery using failed experiments, Nature, 533, 7601, 73-76 (2016)
[90] Curtarolo, S.; Setyawan, W.; Wang, S.; Xue, J.; Yang, K.; Taylor, R. H.; Nelson, L. J.; Hart, G. L.; Sanvito, S.; Buongiorno-Nardelli, M., AFLOWLIB. ORG: A distributed materials properties repository from high-throughput ab initio calculations, Comput. Mater. Sci., 58, 227-235 (2012)
[91] Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C., Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD), Jom, 65, 11, 1501-1509 (2013)
[92] Simpson, T.; Poplinski, J.; Koch, N. P.; Allen, J., Metamodels for computer-based engineering design: Survey and recommendations, Eng. Comput., 17, 2, 129-150 (2001)
[93] Schutte, J.; Groenwold, A., Sizing design of truss structures using particle swarms, Struct. Multidiscip. Optim., 25, 4, 261-269 (2003)
[94] Sonmez, M., Discrete optimum design of truss structures using artificial bee colony algorithm, Struct. Multidiscip. Optim., 43, 1, 85-97 (2011)
[95] Arruda, E. M.; Boyce, M. C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 2, 389-412 (1993)
[96] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K., Nonlinear Fnite Eements for Continua and Structures (2013), John Wiley & Sons
[97] Feyel, F.; Chaboche, J.-L., FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Engrg., 183, 3, 309-330 (2000)
[98] Kouznetsova, V.; Geers, M. G.D.; Brekelmans, W. A.M., Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Internat. J. Numer. Methods Engrg., 54, 8, 1235-1260 (2002)
[99] Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Engrg., 192, 28-30, 3233-3244 (2003)
[100] Fish, J.; Kuznetsov, S., Computational continua, Internat. J. Numer. Methods Engrg., 84, 7, 774-802 (2010)
[101] Ghosh, S.; Lee, K.; Moorthy, S., Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and voronoi cell finite element model, Comput. Methods Appl. Mech. Engrg., 132, 1-2, 63-116 (1996)
[102] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Engrg., 157, 1-2, 69-94 (1998)
[103] Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches, Int. J. Solids Struct., 37, 16, 2285-2311 (2000)
[104] Melro, A.; Camanho, P.; Pinho, S., Generation of random distribution of fibres in long-fibre reinforced composites, Compos. Sci. Technol., 68, 9, 2092-2102 (2008)
[105] Melro, A.; Camanho, P.; Pires, F. A.; Pinho, S., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I -Constitutive modelling, Int. J. Solids Struct., 50, 11-12, 1897-1905 (2013)
[106] Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S., Global Sensitivity Analysis: The Primer (2008), John Wiley & Sons
[107] Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S., Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index, Comput. Phys. Comm., 181, 2, 259-270 (2010)
[108] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[110] Krige, D. G., A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand, (Ph.D. thesis) (1951), University of Witwatersrand
[111] Matheron, G., Principles of geostatistics, Econom. Geol., 58, 8, 1246-1266 (1963)
[112] Banerjee, S.; Carlin, B. P.; Gelfand, A. E., Hierarchical Modeling and Analysis for Spatial Data (2014), Crc Press
[113] Ankenman, B.; Nelson, B. L.; Staum, J., Stochastic kriging for simulation metamodeling, Oper. Res., 58, 2, 371-382 (2010)
[114] Dubrule, O., Comparing splines and kriging, Comput. Geosci., 10, 2, 327-338 (1984)
[115] Laslett, G. M., Kriging and splines: An empirical comparison of their predictive performance in some applications, J. Amer. Statist. Assoc., 89, 426, 391-400 (1994)
[116] McCullagh, P.; Nelder, J. A., Generalized Linear Models, Vol. 37 (1989), CRC press
[117] Joseph, V. R., Limit kriging, Technometrics, 48, 4, 458-466 (2006)
[119] Conti, S.; O’Hagan, A., Bayesian emulation of complex multi-output and dynamic computer models, J. Statist. Plann. Inference, 140, 3, 640-651 (2010)
[120] Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev., 65, 6, 386 (1958)
[121] Widrow, B.; Hoff, M. E., Adaptive switching circuits, IRE WESCON Convention Record, 4, 96-104 (August 1960)
[122] Hopfield, J. J., Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci., 79, 8, 2554-2558 (1982)
[123] (Rumelhart, D. E.; McClelland, J. L.; PDP Research Group, CORPORATE, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations (1986), MIT Press: MIT Press Cambridge, MA, USA)
[124] Hagan, M. T.; Demuth, H. B.; Beale, M. H.; De Jesús, O., Neural Network Design (1996)
[125] Werbos, P., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, (Ph.D. thesis) (1974), Harvard University: Harvard University Cambridge, MA
[126] Sobol, I. M., On sensitivity estimation for nonlinear mathematical models, Mat. Model., 2, 1, 112-118 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.