×

zbMATH — the first resource for mathematics

Reproducing kernel formulation of B-spline and NURBS basis functions: a meshfree local refinement strategy for isogeometric analysis. (English) Zbl 1439.65202
Summary: A reproducing kernel meshfree formulation is presented for the B-spline and non-uniform rational B-spline (NURBS) basis functions used in isogeometric analysis. It is shown that after properly introducing meshfree nodes, support size and consistency conditions, the reproducing kernel meshfree shape functions are capable of exactly representing the isogeometric B-spline and NURBS basis functions. Consequently, the proposed formulation successfully establishes a correspondence or close link between the meshfree methods and the isogeometric analysis. More importantly, the proposed reproducing kernel meshfree representation of isogeometric basis functions provides a reliable meshfree strategy to the local model refinement in isogeometric analysis. This strategy inherits the strength of meshfree methods and gives considerable easiness for the local refinement, i.e., the shape functions in the refined regions can be naturally constructed in a straightforward meshfree manner. Meanwhile, the consistency and independence of the shape functions required by the subsequent computational analysis are ensured by the consistency conditions of reproducing kernel meshfree formulation. A detailed illustration of the proposed approach for isogeometric local model refinement is presented. The effectiveness of the proposed meshfree local refinement strategy for isogeometric analysis is demonstrated through numerical examples.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
Software:
ISOGAT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005)
[2] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons Chichester
[3] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257-5296 (2006)
[4] Reali, A., An isogeometric analysis approach for the study of structural vibrations, J. Earthq. Eng., 10, 1-30 (2006)
[5] Hughes, T. J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104-4124 (2008)
[6] Thai, C. H.; Nguyen-Xuan, H.; Nguyen-Thanh, N.; Le, T. H.; Nguyen-Thoi, T.; Rabczuk, T., Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach, Internat. J. Numer. Methods Engrg., 91, 571-603 (2012)
[7] Wang, D.; Liu, W.; Zhang, H., Novel higher order mass matrices for isogeometric structural vibration analysis, Comput. Methods Appl. Mech. Engrg., 260, 92-108 (2013)
[8] Hughes, T. J.R.; Evans, J. A.; Reali, A., Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg., 272, 290-320 (2014)
[9] Wang, D.; Liang, Q.; Zhang, H., A superconvergent isogeometric formulation for eigenvalue computation of three dimensional wave equation, Comput. Mech., 57, 1037-1060 (2016)
[10] Bazilevs, Y.; Hughes, T. J.R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. Mech., 43, 143-150 (2008)
[11] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J. Comput. Phys., 229, 3402-3414 (2010)
[12] Hsu, M. C.; Wang, C.; Xu, F.; Herrema, A. J.; Krishnamurthy, A., Direct immersogeometric fluid flow analysis using B-rep CAD models, Comput. Aided Geom. Design, 43, 143-158 (2016)
[13] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms and computations, Comput. Mech., 43, 3-37 (2008)
[14] Hsu, M. C.; Bazilevs, Y., Fluid-structure interaction modeling of wind turbines: simulating the full machine, Comput. Mech., 50, 821-833 (2012)
[15] Casquero, H.; Liu, L.; Bona-Casas, C.; Zhang, Y.; Goez, H., A hybrid variational-collocation immersed method for fluid-structure interaction using unstructured T-splines, Internat. J. Numer. Methods Engrg., 105, 855-880 (2016)
[16] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wuchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902-3914 (2009)
[17] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K. U.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 3410-3424 (2011)
[18] Wang, D.; Liu, W.; Zhang, H., Superconvergent isogeometric free vibration analysis of Euler-Bernoulli beams and Kirchhoff plates with new higher order mass matrices, Comput. Methods Appl. Mech. Engrg., 286, 230-267 (2015)
[19] Deng, X.; Korobenko, A.; Yan, J.; Bazilevs, Y., Isogeometric analysis of continuum damage in rotation-free composite shells, Comput. Methods Appl. Mech. Engrg., 284, 349-372 (2015)
[20] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333-4352 (2008)
[21] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77-95 (2012)
[22] Kästner, M.; Metsch, P.; De Borst, R., Isogeometric analysis of the Cahn-Hilliard equation-a convergence study, J. Comput. Phys., 305, 360-371 (2016)
[23] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229-263 (2010)
[24] Döfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-Splines, Comput. Methods Appl. Mech. Engrg., 199, 264-275 (2010)
[25] Zhang, Y.; Wang, W.; Hughes, T. J.R., Solid T-spline construction from boundary representations for genus-zero geometry, Comput. Methods Appl. Mech. Engrg., 249, 185-197 (2012)
[26] Ghorashi, S. S.; Valizadeh, N.; Mohammadi, S.; Rabczuk, T., T-spline based XIGA for fracture analysis of orthotropic media, Comput. Struct., 147, 138-146 (2015)
[27] Buffa, A.; Cho, D.; Sangalli, G., Linear independence of the T-spline blending functions associated with some particular T-meshes, Comput. Methods Appl. Mech. Engrg., 199, 1437-1445 (2010)
[28] Li, X.; Zheng, J. M.; Sederberg, T. W.; Hughes, T. J.R.; Scott, M. A., On linear independence of T-spline blending functions, Comput. Aided Geom. Design, 29, 63-76 (2012)
[29] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213, 206-222 (2012)
[30] Beirão da Veiga, L.; Buffa, A.; Cho, D.; Sangalli, G., Analysis-suitable T-splines are dual-compatible, Comput. Methods Appl. Mech. Engrg., 249, 42-51 (2012)
[31] Li, X.; Scott, M. A., Analysis-suitable T-splines: characterization, refineability, and approximation, Math. Models Methods Appl. Sci., 24, 1141-1164 (2014)
[32] Zhang, J.; Li, X., On the linear independence and partition of unity of arbitrary degree analysis-suitable T-splines, Commun. Math. Stat., 3, 353-364 (2015)
[33] Wei, X.; Zhang, Y.; Liu, L.; Hughes, T. J.R., Truncated T-splines: Fundamentals and methods, Comput. Methods Appl. Mech. Engrg., 316, 349-372 (2016)
[34] Vuong, A. V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3554-3567 (2011)
[35] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Methods Appl. Mech. Engrg., 200, 1892-1908 (2011)
[36] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471-514 (2014)
[37] Wei, X.; Zhang, Y.; Hughes, T. J.R.; Scott, M. A., Truncated hierarchical Catmull-Clark subdivision with local refinement, Comput. Methods Appl. Mech. Engrg., 291, 1-20 (2015)
[38] Rosolen, A.; Arroyo, M., Blending isogeometric analysis and local maximum entropy meshfree approximants, Comput. Methods Appl. Mech. Engrg., 264, 95-107 (2013)
[39] Wang, D.; Zhang, H., A consistently coupled isogeometric-meshfree method, Comput. Methods Appl. Mech. Engrg., 268, 843-870 (2014)
[40] Zhang, H.; Wang, D.; Liu, W., Isogeometric-meshfree coupled analysis of Kirchhoff plates, Adv. Struct. Eng., 17, 1159-1176 (2014)
[41] Valizadeh, N.; Bazilevs, Y.; Chen, J. S.; Rabczuk, T., A coupled IGA-Meshfree discretization of arbitrary order of accuracy and without global geometry parameterization, Comput. Methods Appl. Mech. Engrg., 293, 20-37 (2015)
[42] Chi, S. W.; Lin, S. P., Meshfree analysis with the aid of NURBS boundary, Comput. Mech., 58, 371-389 (2016)
[43] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Gakerkin methods, Internat. J. Numer. Methods Engrg., 37, 229-256 (1994)
[44] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 1081-1106 (1995)
[45] Duarte, C. A.; Oden, J. T., An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262 (1996)
[46] Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. Methods Appl. Mech. Engrg., 139, 195-227 (1996)
[47] Lu, H.; Chen, J. S., Adaptive meshfree particle method, Lect. Notes Comput. Sci. Eng., 26, 251-267 (2002)
[48] You, Y.; Chen, J. S.; Lu, H., Filters reproducing kernel, and adaptive meshfree method, Comput. Mech., 31, 316-326 (2003)
[49] Rabczuk, T.; Belytschko, T., Adaptivity for structured meshfree particle methods in 2D and 3D, Internat. J. Numer. Methods Engrg., 63, 1559-1582 (2005)
[50] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996)
[51] Li, S.; Liu, W. K., Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1-34 (2002)
[52] Chen, J. S.; Belytschko, T., Meshless and meshfree methods, (Encyclopedia of Applied and Computational Mathematics, vol. 88 (2015), Springer: Springer Berlin, Heidelberg), 886-894
[53] Liu, W. K.; Li, S.; Belytschko, T., Moving least-square reproducing kernel methods (I) methodology and convergence, Comput. Methods Appl. Mech. Engrg., 143, 113-154 (1997)
[54] Liu, W. K.; Jun, S., Multiple-scale reproducing kernel particle methods for large deformation problems, Internat. J. Numer. Methods Engrg., 41, 1339-1362 (1998)
[55] Chen, J. S.; Pan, C.; Roque, C. M.O. L.; Wang, H. P., A Lagrangian reproducing kernel particle method for metal forming analysis, Comput. Mech., 22, 289-307 (1998)
[56] Chen, J. S.; Han, W.; You, Y.; Meng, X., A reproducing kernel method with nodal interpolation property, Internat. J. Numer. Methods Engrg., 56, 935-960 (2003)
[57] Wang, D.; Chen, P., Quasi-convex reproducing kernel meshfree method, Comput. Mech., 54, 689-709 (2014)
[58] Hillman, M.; Chen, J. S., Nodally integrated implicit gradient reproducing kernel particle method for convection dominated problems, Comput. Methods Appl. Mech. Engrg., 299, 381-400 (2016)
[59] Rogers, D. F., An Introduction to NURBS with Historical Perspective (2001), Academic Press: Academic Press London
[60] Marsden, M. J., An identity for spline functions with applications to variation-diminishing spline approximation, J. Approx. Theory, 3, 7-49 (1970)
[61] Wang, D.; Xuan, J., An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions, Comput. Methods Appl. Mech. Engrg., 199, 2425-2436 (2010)
[62] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), Academic Press: Academic Press McGraw, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.