×

zbMATH — the first resource for mathematics

A nonparametric test for covariate-adjusted models. (English) Zbl 1439.62113
Summary: This paper provides a nonparametric test for covariate-adjusted models. The proposed test statistic, obtained by using the adjusted response and predictors, has the same limit distribution as when the response and predictors are observed directly.

MSC:
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62E20 Asymptotic distribution theory in statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cui, X.; Guo, W. S.; Lin, L.; Zhu, L. X., Covariate-adjusted nonlinear regression, Ann. Statist., 37, 1839-1870, (2009) · Zbl 1168.62035
[2] Delaigle, A., Hall, P., Lin, L., 2016. Nonparametric covariate-adjusted regression. arXiv preprint arXiv:1601.02739. · Zbl 1349.62097
[3] Koul, H. L.; Ni, P. P., Minimum distance regression model checking, J. Statist. Plann. Inference, 119, 109-141, (2004) · Zbl 1032.62036
[4] Li, F.; Lin, L.; Cui, X., Covariate-adjusted partially linear regression models, Comput. Statist. Data Anal., 39, 1054-1074, (2010) · Zbl 1284.62422
[5] Nguyen, D. V.; Sentürk, D., Distortion diagnostics for covariate-adjusted regression: graphical techniques based on local linear modeling, J. Data Sci., 5, 471-490, (2007)
[6] Nguyen, D. V.; Sentürk, D., Multicovariate-adjusted regression models, J. Stat. Comput. Simul., 78, 813-827, (2008) · Zbl 1431.62167
[7] Nguyen, D. V.; Sentürk, D.; Carroll, R. J., Covariate-adjusted linear mixed effects model with an application to longitudinal data, J. Nonparametr. Stat., 20, 459-481, (2008) · Zbl 1145.62032
[8] Sentürk, D., Covariate-adjusted varying coefficient models, Biostatistics, 7, 235-251, (2006) · Zbl 1169.62360
[9] Sentürk, D.; Müller, H., Covariate-adjusted regression, Biometrika, 92, 75-89, (2005) · Zbl 1068.62082
[10] Sentürk, D.; Müller, H., Inference for covariate adjusted regression via varying coefficient models, Ann. Statist., 34, 654-679, (2006) · Zbl 1095.62045
[11] Sentürk, D.; Müller, H., Covariate-adjusted generalized linear models, Biometrika, 96, 357-370, (2009) · Zbl 1163.62053
[12] Sentürk, D.; Nguyen, D. V., Asymptotic properties of covariate-adjusted regression with correlated errors, Statist. Probab. Lett., 79, 1175-1180, (2009) · Zbl 1160.62079
[13] Zhang, J.; Feng, Z.; Zhou, B., A revisit to correlation analysis for distortion measurement error data, J. Multivariate Anal., 124, 116-129, (2014) · Zbl 1278.62065
[14] Zhang, J.; Gai, Y.; Wu, P., Estimation in linear regression models with measurement errors subject to single-indexed distortion, Comput. Statist. Data Anal., 59, 103-120, (2013)
[15] Zhang, J.; Li, G.; Feng, Z., Checking the adequacy for a distortion errors-in-variables parametric regression model, Comput. Statist. Data Anal., 83, 52-64, (2015)
[16] Zhang, J.; Yu, Y.; Zhu, L. X.; Liang, H., Partial linear single index models with distortion measurement errors, Ann. Inst. Statist. Math., 65, 237-267, (2013) · Zbl 1440.62141
[17] Zhang, J.; Zhu, L. X.; Liang, H., Nonlinear models with measurement errors subject to single-indexed distortion, J. Multivariate Anal., 112, 1-23, (2012) · Zbl 1274.62304
[18] Zheng, J. X., A consistent test of functional form via nonparametric estimation technique, J. Econometrics, 75, 263-289, (1996) · Zbl 0865.62030
[19] Zhu, L. X.; Fang, K. T., Asymptotics for kernel estimate of sliced inverse regression, Ann. Statist., 24, 1053-1068, (1996) · Zbl 0864.62027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.