×

Instability of geophysical flows at arbitrary latitude. (English) Zbl 1439.37084

Summary: In this paper, we present an exact solution of the nonlinear governing equations for the geophysical waves propagating above the thermocline toward the east at arbitrary latitude. Based on the short-wavelength instability approach, we demonstrate the criteria for the hydrodynamical instability of such water waves.

MSC:

37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
74G05 Explicit solutions of equilibrium problems in solid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76E20 Stability and instability of geophysical and astrophysical flows
76U60 Geophysical flows
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bayly, BJ; Miksad, RW, Three-dimensional instabilities in quasi-two-dimensional inviscid flows, Nonlinear Wave Interactions in Fluids, 71-77 (1987), New York: ASME, New York
[2] Bennett, A., Lagrangian Fluid Dynamics (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1105.76002
[3] Chu, J.; Ionescu-Kruse, D.; Yang, Y., Exact solution and instability for geophysical waves at arbitrary latitude, Discrete Contin. Dyn. Syst., 39, 4399-4414 (2019) · Zbl 1419.37075
[4] Chu, J.; Ionescu-Kruse, D.; Yang, Y., Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude, J. Math. Fluid Mech., 21, 16 (2019) · Zbl 1411.86002
[5] Constantin, A., On the deep water wave motion, J. Phys. A, 34, 1405-1417 (2001) · Zbl 0982.76015
[6] Constantin, A., The trajectories of particles in Stokes waves, Invent. Math., 166, 523-535 (2006) · Zbl 1108.76013
[7] Constantin, A.; Strauss, W., Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63, 533-557 (2010) · Zbl 1423.76061
[8] Constantin, A., Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis (2011), Philadelphia: SIAM, Philadelphia · Zbl 1266.76002
[9] Constantin, A., An exact solution for equatorially trapped waves, J. Geophys. Res., 117, C05029 (2012)
[10] Constantin, A., On the modelling of equatorial waves, Geophys. Res. Lett., 39, L05602 (2012)
[11] Constantin, A., Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr., 43, 165-175 (2013)
[12] Constantin, A.; Germain, P., Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118, 2802-2810 (2013)
[13] Constantin, A., Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44, 781-789 (2014)
[14] Constantin, A.; Johnson, RS, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109, 311-358 (2015)
[15] Constantin, A.; Monismith, SG, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820, 511-528 (2017) · Zbl 1387.86009
[16] Constantin, A.; Johnson, RS, Steady large-scale ocean flows in spherical coordinates, Oceanography, 31, 42-50 (2018)
[17] Constantin, A.; Ivanov, RI, Equatorial wave-current interactions, Commun. Math. Phys., 370, 1-48 (2019) · Zbl 1421.35102
[18] Constantin, A.; Johnson, RS, On the nonlinear, three-dimensional structure of equatorial oceanic flows, J. Phys. Oceanogr., 49, 2029-2042 (2019)
[19] Cushman-Roisin, B.; Beckers, JM, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects (2011), Waltham: Academic Press, Waltham · Zbl 1319.86001
[20] Fan, L.; Gao, H., Instability of equatorial edge waves in the background flow, Proc. Am. Math. Soc., 145, 765-778 (2017) · Zbl 1355.35182
[21] Fan, L.; Gao, H.; Xiao, Q., An exact solution for geophysical trapped waves in the presence of an underlying current, Dyn. Partial Differ. Equ., 15, 201-214 (2018) · Zbl 1396.37091
[22] Friedlander, S.; Vishik, MM, Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., 66, 2204-2206 (1991) · Zbl 0968.76543
[23] Gerstner, F., Theorie der wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2, 412-445 (1809)
[24] Genoud, F.; Henry, D., Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16, 661-667 (2014) · Zbl 1308.76035
[25] Gill, AE, Atmosphere—Ocean Dynamics (1982), London: Academic Press, London
[26] Henry, D., The trajectories of particles in deep-water Stokes waves, Int. Math. Res. Not., 2006, 13 (2006) · Zbl 1157.35449
[27] Henry, D., On Gerstner’s water wave, J. Nonlinear Math. Phys., 15, 87-95 (2008) · Zbl 1362.76009
[28] Henry, D., An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38, 18-21 (2013) · Zbl 1297.86002
[29] Henry, D.; Hsu, H-C, Instability of equatorial water waves in the \(f\)-plane, Discrete Contin. Dyn. Syst., 35, 909-916 (2015) · Zbl 1304.35698
[30] Henry, D.; Hsu, H-C, Instability of internal equatorial water waves, J. Differ. Equ., 258, 1015-1024 (2015) · Zbl 1446.76081
[31] Henry, D., Exact equatorial water waves in the \(f\)-plane, Nonlinear Anal. Real World Appl., 28, 284-289 (2016) · Zbl 1329.86009
[32] Henry, D., Equatorially trapped nonlinear water waves in a \(\beta \)-plane approximation with centripetal forces, J. Fluid Mech., 804, R1, 11 (2016) · Zbl 1454.76024
[33] Henry, D., A modified equatorial \(\beta \)-plane approximation modelling nonlinear wave-current interactions, J. Differ. Equ., 263, 2554-2566 (2017) · Zbl 1365.76020
[34] Henry, D., On three-dimensional Gerstner-like equatorial water waves, Philos. Trans. R. Soc. A, 376, 1-16 (2018) · Zbl 1404.76040
[35] Henry, D.; Martin, C-I, Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates, Dyn. Partial Differ. Equ., 15, 337-349 (2018) · Zbl 1406.35251
[36] Henry, D.; Martin, C-I, Exact, free-surface equatorial flows with general stratification in spherical coordinates, Arch. Ration. Mech. Anal., 233, 497-512 (2019) · Zbl 1417.35203
[37] Hsu, H-C, An exact solution for equatorial waves, Monatsh. Math., 176, 143-152 (2015) · Zbl 1304.76011
[38] Ionescu-Kruse, D., An exact solution for geophysical edge waves in the \(f\)-plane approximation, Nonlinear Anal. Real World Appl., 24, 190-195 (2015) · Zbl 1330.35458
[39] Ionescu-Kruse, D., An exact solution for geophysical edge waves in the \(\beta \)-plane approximation, J. Math. Fluid Mech., 17, 699-706 (2015) · Zbl 1329.35311
[40] Ionescu-Kruse, D., Instability of equatorially trapped waves in stratified water, Ann. Mat. Pura Appl., 195, 585-599 (2016) · Zbl 1352.35191
[41] Ionescu-Kruse, D., On the short-wavelength stabilities of some geophysical flows, Philos. Trans. R. Soc. A, 376, 1-21 (2017) · Zbl 1404.76290
[42] Ionescu-Kruse, D., A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows, J. Differ. Equ., 264, 4650-4668 (2018) · Zbl 1386.35403
[43] Ionescu-Kruse, D., Local stability for an exact steady purely azimuthal flow which models the antarctic circumpolar current, J. Math. Fluid Mech., 20, 569-579 (2018) · Zbl 1458.76045
[44] Ionescu-Kruse, D.; Martin, C-I, Local stability for an exact steady purely azimuthal equatorial flow, J. Math. Fluid Mech., 20, 27-34 (2018) · Zbl 1394.76020
[45] Lifschitz, A.; Hameiri, E., Local stability conditions in fluid mechanics, Phys. Fluids, 3, 2644-2651 (1991) · Zbl 0746.76050
[46] Pollard, RT, Surface waves with rotation: an exact solution, J. Geophys. Res., 75, 5895-5898 (1970) · Zbl 0218.76098
[47] Rodriguez-Sanjurjo, A., Instability of nonlinear wave-current interactions in a modified equatorial \(\beta \)-plane approximation, J. Math. Fluid Mech., 21, R24, 12 (2019) · Zbl 1411.76015
[48] Vallis, GK, Atmospheric and Oceanic Fluid Dynamics (2006), Cambridge: Cambridge University Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.