×

zbMATH — the first resource for mathematics

Modular lattices from a variation of construction A over number fields. (English) Zbl 1439.11158
Summary: We consider a variation of Construction A of lattices from linear codes based on two classes of number fields, totally real and CM Galois number fields. We propose a generic construction with explicit generator and Gram matrices, then focus on modular and unimodular lattices, obtained in the particular cases of totally real, respectively, imaginary, quadratic fields. Our motivation comes from coding theory, thus some relevant properties of modular lattices, such as minimal norm, theta series, kissing number and secrecy gain are analyzed. Interesting lattices are exhibited.

MSC:
11H31 Lattice packing and covering (number-theoretic aspects)
94A15 Information theory (general)
Software:
Magma; SageMath
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Bachoc, Applications of coding theory to the construction of modular lattices,, Journal of Combinatorial Theory, 78, 92, (1997) · Zbl 0876.94053
[2] E. Bayer-Fluckiger, Ideal lattices,, A Panorama of Number Theory or The View from Baker’s Garden, 168, (2002) · Zbl 1043.11057
[3] E. Bayer-Fluckiger, Modular lattices over cyclotomic fields,, Journal of Number Theory, 114, 394, (2005) · Zbl 1081.11047
[4] V. Blomer, Uniform bounds for Fourier coefficients of theta-series with arithmetic applications,, Acta Arithmetica, 114, 1, (2004) · Zbl 1104.11020
[5] S. Böcherer, On theta series attached to maximal lattices and their adjoints,, J.ramanujan Math.soc, 25, 265, (2010) · Zbl 1225.11048
[6] W. Bosma, The Magma algebra system. I. The user language,, J. Symbolic Comput., 24, 235, (1997) · Zbl 0898.68039
[7] R. Chapman, 2-modular lattices from ternary codes,, Journal De Théorie Des Nombres De Bordeaux, 14, 73, (2002) · Zbl 1050.94018
[8] K. S. Chua, Eisenstein lattices, Galois rings, and Theta Series,, European Journal of Combinatorics, 25, 179, (2004) · Zbl 1049.11067
[9] J. H. Conway, <em>Sphere Packings, Lattices and Groups</em>,, Springer, (1988) · Zbl 0634.52002
[10] J. H. Conway, A new upper bound for the minimum of an integral lattice of determinant one,, Bull. Amer. Math. Soc., 23, 383, (1990) · Zbl 0709.11030
[11] J. H. Conway, A note on optimal unimodular lattices,, J. Number Theory, 72, 357, (1998) · Zbl 0917.11027
[12] W. Ebeling, <em>Lattices and Codes: A Course Partially Based on Lecturers by F. Hirzebruch Advanced Lectures in Mathematics</em>,, Springer, (2013) · Zbl 1257.11066
[13] A.-M. Ernvall-Hytönen, On a conjecture by Belfiore and Solé on some lattices,, IEEE Trans. Inf. Theory, 58, 5950, (2012) · Zbl 1364.11132
[14] G. D. Forney, Coset codes-part I: Introduction and geometrical classification,, IEEE Trans. Inform. Theory, 34, 1123, (1988) · Zbl 0665.94018
[15] X. Hou, Construction and secrecy gain of a family of 5-modular lattices,, in the proceedings of the IEEE Information Theory Workshop, 117, (2014)
[16] W. Kositwattanarerk, Construction a of lattices over number fields and block fading wiretap coding,, IEEE Transactions on Information Theory, 61, 2273, (2015) · Zbl 1359.94806
[17] F. Lin, A classification of unimodular lattice wiretap codes in small dimensions,, IEEE Trans. Inf. Theory, 59, 3295, (2013) · Zbl 1364.94761
[18] F. Lin, 2- and 3-modular lattice wiretap codes in small dimensions,, Applicable Algebra in Engineering, 26, 571, (2015) · Zbl 1343.94098
[19] S. Ling, <em>Coding Theory: A First Course</em>,, Cambridge University Press, (2004)
[20] C. L. Mallows, Upper bounds for modular forms, lattices and codes,, Journal of Algebra, 36, 68, (1975) · Zbl 0311.94002
[21] G. Nebe, Finite subgroups of GL\(_24(\mathbbQ)\),, Experimental Mathematics, 5, 163, (1996)
[22] G. Nebe, Finite subgroups of GL\(_n(\mathbbQ)\) for \(25≤ n≤31\),, Communications in Algebra, 24, 2341, (1996) · Zbl 0856.20031
[23] G. Nebe, S-extremal strongly modular lattices,, Journal de théorie des nombres de Bordeaux, 19, 683, (2007) · Zbl 1196.11097
[24] G. Nebe, Automorphisms of extremal unimodular lattices in dimension 72,, Journal of Number Theory, 161, 362, (2016) · Zbl 1387.11037
[25] J. Neukirch, <em>Algebraic Number Theory</em>,, Springer-Verlag, (1999) · Zbl 0956.11021
[26] F. Oggier, Algebraic number theory and code design for Rayleigh fading channels,, Foundations and Trends in Communications and Information Theory, 1, 333, (2004) · Zbl 1137.94014
[27] F. Oggier, Lattice codes for the wiretap Gaussian channel: Construction and analysis,, IEEE Transactions on Information Theory, 62, 5690, (2016) · Zbl 1359.94149
[28] F. Oggier, Enabling multiplication in lattice codes via Construction A,, in the proceedings of the IEEE Information Theory Workshop, 9, (2013)
[29] J. Pinchak, The Belfiore-Solé Conjecture and a certain technique for verifying it for a given lattice,, Information Theory and Applications, 1, (2014)
[30] H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices,, L’Enseign. Math., 43, 55, (1997) · Zbl 0898.11014
[31] H.-G. Quebbemann, A shadow identity and an application to isoduality,, Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, 68, 339, (1998) · Zbl 1046.11026
[32] E. Rains, The shadow theory of modular and unimodular lattices,, Journal of Number Theory, 73, 359, (1999) · Zbl 0917.11026
[33] SageMath, <em>The Sage Mathematics Software System (Version 7.1),</em>, The Sage Developers, (2016)
[34] N. J. A. Sloane, Codes over GF(4) and complex lattices,, Journal of Algebra, 52, 168, (1978) · Zbl 0376.94009
[35] N. J. A. Sloane, <em>Catalogue of Lattices,</em>, published electronically at <a href=
[36] Wolfram Research,, Inc., (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.