zbMATH — the first resource for mathematics

A block nonlocal TV method for image restoration. (English) Zbl 1437.94021

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
Full Text: DOI
[1] P. Arias, G. Facciolo, V. Caselles, and G. Sapiro, A variational framework for exemplar-based image inpainting, Int. J. Comput. Vis., 93 (2011), pp. 319–347. · Zbl 1235.94015
[2] J. Biemond, A. M. Tekalp, and R. L. Lagendijk, Maximum likelihood image and blur identification: A unifying approach, Opt. Eng., 29 (1990), pp. 422–435.
[3] A. Buades, B. Coll, and J.-M. Morel, A non-local algorithm for image denoising, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, Vol. 2, IEEE, Computer Society, Los Alamitos, CA, 2005, pp. 60–65. · Zbl 1108.94004
[4] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), pp. 490–530. · Zbl 1108.94004
[5] P. Chatterjee and P. Milanfar, Clustering-based denoising with locally learned dictionaries, IEEE Trans. Image Process., 18 (2009), pp. 1438–1451. · Zbl 1371.94081
[6] P. Chatterjee and P. Milanfar, Patch-based near-optimal image denoising, IEEE Trans. Image Process., 21 (2012), pp. 1635–1649. · Zbl 1373.94069
[7] K. Dabov, A. Foi, and K. Egiazarian, Video denoising by sparse 3d transform-domain collaborative filtering, 2007 15th European in Signal Processing Conference, IEEE, Poznań, Poland, 2007, pp. 145–149.
[8] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080–2095.
[9] W. Dong, X. Li, L. Zhang, and G. Shi, Sparsity-based image denoising via dictionary learning and structural clustering, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2011, IEEE, Piscataway, NJ, 2011, pp. 457–464.
[10] G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), pp. 595–630. · Zbl 1140.68517
[11] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2009), pp. 1005–1028. · Zbl 1181.35006
[12] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323–343. · Zbl 1177.65088
[13] H. Ji, S. Huang, Z. Shen, and Y. Xu, Robust video restoration by joint sparse and low rank matrix approximation, SIAM J. Imaging Sci., 4 (2011), pp. 1122–1142. · Zbl 1234.68451
[14] V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola, From local kernel to nonlocal multiple-model image denoising, Int. J. Comput. Vis., 86 (2010), pp. 1–32.
[15] S. Kindermann, S. Osher, and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Modeling & Simulation, 4 (2005), pp. 1091–1115. · Zbl 1161.68827
[16] M. Lindenbaum, M. Fischer, and A. Bruckstein, On Gabor’s contribution to image enhancement, Pattern Recognit., 27 (1994), pp. 1–8.
[17] J. Liu, H. Huang, Z. Huan, and H. Zhang, Adaptive variational method for restoring color images with high density impulse noise, Int. J. Comput. Vis., 90 (2010), pp. 131–149.
[18] J. Liu, X.-C. Tai, H. Huang, and Z. Huan, A weighted dictionary learning model for denoising images corrupted by mixed noise, IEEE Trans. Image Process., 22 (2013), pp. 1108–1120. · Zbl 1373.94256
[19] J. Liu and H. Zhang, Image segmentation using a local GMM in a variational framework, J. Math. Imaging Vis., 46 (2013), pp. 161–176. · Zbl 1310.94018
[20] M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20 (2004), pp. 99–120. · Zbl 1366.94065
[21] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), pp. 629–639.
[22] L. Rudin, S. Osher, et al., Total variation based image restoration with free local constraints, in IEEE International Conference Image Processing, 1994, Vol. 1, IEEE, Computer Society, Los Alamitos, CA, 1994, pp. 31–35.
[23] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D. 60 (1992), pp. 259–268. · Zbl 0780.49028
[24] A. Singer, Y. Shkolnisky, and B. Nadler, Diffusion interpretation of nonlocal neighborhood filters for signal denoising, SIAM J. Imaging Sci., 2 (2009), pp. 118–139. · Zbl 1175.62102
[25] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, An ADMM algorithm for a class of total variation regularized estimation problems, in Proceedings of the 16th IFAC Symposium on System Identification, Brussels, Belgium, 2012, pp. 83–88.
[26] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300–339. · Zbl 1206.90245
[27] L. P. Yaroslavsky and L. Yaroslavskij, Digital picture processing. An introduction, Springer Ser. Inform. Sci. 9, Springer, Berlin, 1985. · Zbl 0585.94001
[28] D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, in 2011 IEEE International Conference on Computer Vision, ICCV, IEEE, Piscataway, NJ, 2011, pp. 479–486.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.