zbMATH — the first resource for mathematics

Approximating the size of a radio network in beeping model. (English) Zbl 1437.68012
Suomela, Jukka (ed.), Structural information and communication complexity. 23rd international colloquium, SIROCCO 2016, Helsinki, Finland, July 19–21, 2016. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 9988, 358-373 (2016).
Summary: In a single-hop radio network, nodes can communicate with each other by broadcasting to a shared wireless channel. In each time slot, all nodes receive feedback from the channel depending on the number of transmitters. In the beeping model, each node learns whether zero or at least one node have transmitted. In such a model, a procedure estimating the size of the network can be used for efficiently solving the problems of leader election or conflict resolution. We introduce a time-efficient uniform algorithm for size estimation of single-hop networks. With probability at least \(1-1/f\) our solution returns \((1+\varepsilon)\)-approximation of the network size \(n\) within \(\mathcal {O}(\log \log n+\log f/\varepsilon ^2)\) time slots. We prove that the algorithm is asymptotically time-optimal for any constant \(\varepsilon >0\).
For the entire collection see [Zbl 1350.68019].

68M10 Network design and communication in computer systems
68M12 Network protocols
68M14 Distributed systems
68W15 Distributed algorithms
68W25 Approximation algorithms
Full Text: DOI
[1] Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013) · Zbl 1311.68024
[2] Bordim, J.L., Cui, J., Hayashi, T., Nakano, K., Olariu, S.: Energy-efficient initialization protocols for ad-hoc radio networks. In: Aggarwal, A., Pandu Rangan, C. (eds.) Algorithms and Computation. LNCS, vol. 1741, pp. 215–224. Springer, Heidelberg (1999). doi: 10.1007/3-540-46632-0_23 · Zbl 0970.68631
[3] Caragiannis, I., Galdi, C., Kaklamanis, C.: Basic computations in wireless networks. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 533–542. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11602613_54 · Zbl 1173.68382
[4] Chakrabarti, A., Regev, O.: An optimal lower bound on the communication complexity of gap-hamming-distance. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 51–60. ACM (2011). http://doi.acm.org/10.1145/1993636.1993644 · Zbl 1288.90005
[5] Chassaing, P., Gerin, L.: Efficient estimation of the cardinality of large data sets. In: 4th Colloquium on Mathematics and Computer Science, DMTCS Proceedings, pp. 419–422 (2006) · Zbl 1191.68378
[6] Chen, B., Zhou, Z., Yu, H.: Understanding RFID counting protocols. In: Helal, S., Chandra, R., Kravets, R. (eds.) The 19th Annual International Conference on Mobile Computing and Networking, MobiCom 2013, Miami, FL, USA, 30 September–04 October 2013, pp. 291–302. ACM (2013). http://doi.acm.org/10.1145/2500423.2500431
[7] Cichoń, J., Lemiesz, J., Szpankowski, W., Zawada, M.: Two-phase cardinality estimation protocols for sensor networks with provable precision. In: Proceedings of WCNC 2012, Paris, France. IEEE (2012)
[8] Cichoń, J., Lemiesz, J., Zawada, M.: On size estimation protocols for sensor networks. In: Proceedings of the 51th IEEE Conference on Decision and Control, CDC 10–13, Maui, HI, USA. pp. 5234–5239, Proceedings of 51st Annual Conference on Decision and Control (CDC). IEEE, December 2012
[9] Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010) · Zbl 1290.68020
[10] Flajolet, P., Fusy, E., Gandouet, O., Meunier, F.: Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm. In: Proceedings of the Conference on Analysis of Algorithms (AofA 2007), pp. 127–146 (2007) · Zbl 1192.68959
[11] Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci. 31(2), 182–209 (1985) · Zbl 0583.68059
[12] Giroire, F.: Order statistics and estimating cardinalities of massive data sets. Discrete Appl. Math. 157(2), 406–427 (2009) · Zbl 1169.68054
[13] Greenberg, A.G., Flajolet, P., Ladner, R.E.: Estimating the multiplicities of conflicts to speed their resolution in multiple access channels. J. ACM 34(2), 289–325 (1987). http://doi.acm.org/10.1145/23005.23006 · Zbl 0634.94002
[14] Han, H., Sheng, B., Tan, C.C., Li, Q., Mao, W., Lu, S.: Counting RFID tags efficiently and anonymously. In: 29th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2010, 15–19 March 2010, San Diego, CA, USA, pp. 1028–1036. IEEE (2010). http://dx.doi.org/10.1109/INFCOM.2010.5461944
[15] Jurdziński, T., Kutyłowski, M., Zatopianski, J.: Energy-efficient size approximation of radio networks with no collision detection. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 279–289. Springer, Heidelberg (2002) · Zbl 1077.90513
[16] Kabarowski, J., Kutyłowski, M., Rutkowski, W.: Adversary immune size approximation of single-hop radio networks. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 148–158. Springer, Heidelberg (2006) · Zbl 1178.68037
[17] Kodialam, M.S., Nandagopal, T.: Fast and reliable estimation schemes in RFID systems. In: Gerla, M., Petrioli, C., Ramjee, R. (eds.) Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, MOBICOM 2006, Los Angeles, CA, USA, 23–29 September 2006, pp. 322–333. ACM (2006). http://doi.acm.org/10.1145/1161089.1161126
[18] Kodialam, M.S., Nandagopal, T., Lau, W.C.: Anonymous tracking using RFID tags. In: 26th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2007, Anchorage, Alaska, USA, 6–12 May 2007, pp. 1217–1225. IEEE (2007). http://dx.doi.org/10.1109/INFCOM.2007.145
[19] Nakano, K., Olariu, S.: Energy-efficient initialization protocols for single-hop radio networks with no collision detection. IEEE Trans. Parallel Distrib. Syst. 11(8), 851–863 (2000) · Zbl 05107466
[20] Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE Trans. Parallel Distrib. Syst. 13(5), 516–526 (2002). http://doi.ieeecomputersociety.org/10.1109/TPDS.2002.1003864 · Zbl 05107082
[21] Qian, C., Ngan, H., Liu, Y., Ni, L.M.: Cardinality estimation for large-scale RFID systems. IEEE Trans. Parallel Distrib. Syst. 22(9), 1441–1454 (2011). http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.36
[22] Shahzad, M., Liu, A.X.: Every bit counts: fast and scalable RFID estimation. In: Akan, Ö.B., Ekici, E., Qiu, L., Snoeren, A.C. (eds.) The 18th Annual International Conference on Mobile Computing and Networking, Mobicom 2012, Istanbul, Turkey, 22–26 August 2012, pp. 365–376. ACM (2012). http://doi.acm.org/10.1145/2348543.2348588
[23] Whang, K.Y., Zanden, B.T.V., Taylor, H.M.: A linear-time probabilistic counting algorithm for database applications. ACM Trans. Database Syst. 15(2), 208–229 (1990)
[24] Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access channel. SIAM J. Comput. 15(2), 468–477 (1986). http://dx.doi.org/10.1137/0215032 · Zbl 0612.94001
[25] Zheng, Y., Li, M.: ZOE: fast cardinality estimation for large-scale RFID systems. In: Proceedings of the IEEE INFOCOM 2013, Turin, Italy, 4–19 April 2013, pp. 908–916. IEEE (2013). http://dx.doi.org/10.1109/INFCOM.2013.6566879
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.