zbMATH — the first resource for mathematics

A-optimal designs for quadratic mixture canonical polynomials with spline. (English) Zbl 1437.62302
Summary: A mixture canonical polynomial with spline, which consists of several grafted polynomial submodels, has attracted a great deal of researchers in recent years. There is a typical mixture polynomial with spline, in which the contribution of one ingredient proportion to the response variable is different from that of the others. Much of the previous work mainly focuses on the D-optimal design for this kind of model, in large part because of the intractability of other optimal criteria. In this paper, we propose the minimum support A-optimal design for quadratic mixture canonical polynomials with spline.
62K05 Optimal statistical designs
65D07 Numerical computation using splines
PDF BibTeX Cite
Full Text: DOI
[1] Dette, H.; Melas, V. B., A note on all-bias designs with applications in spline regression models, J. Statist. Plann. Inference, 140, 7, 2037-2045 (2010) · Zbl 1184.62138
[2] Dette, H.; Melas, V. B.; Pepelyshev, A., Optimal designs for free knot least squares splines, Statist. Sinica, 18, 3, 1047-1062 (2006) · Zbl 1149.62064
[3] Dette, H.; Melas, V. B.; Pepelyshev, A., Optimal design for smoothing splines, Ann. Inst. Statist. Math., 63, 981-1003 (2011) · Zbl 1225.62106
[4] Fedorov, V. V., Theory of Optimal Experiments, Vol. 1, 345-350 (1972), Academic Press
[5] Furlanetto, S.; Cirri, M.; Piepel, G.; Mennini, N.; Mura, P., Mixture experiment methods in the development and optimization of microemulsion formulations, J. Pharm. Biomed. Anal., 55, 4, 610-617 (2011)
[6] Goos, P.; Donev, A. N., Blocking response surface designs, Comput. Statist. Data Anal., 51, 2, 1075-1088 (2005) · Zbl 1157.62471
[7] Goos, P.; Donev, A. N., D-optimal minimum support mixture designs in blocks, Metrika, 65, 1, 53-68 (2007) · Zbl 1105.62076
[8] Heiligers, B., Experimental design for polynomial spline regression, Tatra Mt. Math. Publ., 17, 157-165 (1999) · Zbl 1067.62561
[9] Huang, M. N.L.; Hsu, H. L.; Chou, C. J.; Klein, T., Model-robust \(d\)-and \(a\)-optimal designs for mixture experiments, Statist. Sinica, 19, 19, 1055-1075 (2009) · Zbl 1166.62055
[10] Huang, M. N.L.; Huang, M. K., \( \Phi_p\)-Optimal designs for a linear log contrast model for experiments with mixtures, Metrika, 70, 2, 239-256 (2009) · Zbl 1433.62216
[11] Kiefer, J., General equivalence theory for optimum designs (approximate theory), Ann. Statist., 2, 5, 849-879 (1974) · Zbl 0291.62093
[12] Kiefer, J., Optimal design: Variation in structure and performance under change of criterion, Biometrika, 62, 2, 277-288 (1975) · Zbl 0321.62086
[13] Scheffe, H., The simplex-centroid design for experiments with mixtures, J. R. Stat. Soc., 25, 2, 235-263 (1963) · Zbl 0133.12301
[14] Tang, Y. P.; Shen, J.; Tao, W. W., Research ideas and methodology of complicated pharmaco-toxic components for traditional chinese medicine incompatibility, Chin. J. Pharmacol. Toxicol., 29, 6, 954-959 (2015)
[15] Yang, J.; Yan, Z.; Liu, D., Study on the compatibility of aconite and pinellia ternat, J. Sichuan Tradit. Chin. Med., 33, 4, 23-24 (2015)
[16] Yu, T.; Cao, F., The study of the compatibility of aconite and pinellia ternat, Hubei J. Tradit. Chin. Med., 39, 4, 37-39 (2017)
[17] Zhang, C.; Peng, H., Optimal designs for quadratic mixture canonical polynomials with spline, Statist. Probab. Lett., 82, 6, 1095-1101 (2012) · Zbl 1239.62090
[18] Zhang, C.; Wong, W.; Peng, H., Dual objective optimal mixture designs, Aust. N. Z. J. Stat., 54, 2, 211-222 (2012) · Zbl 1336.62215
[19] Zhou, M.; Wu, X.; Wang, Z., Investigation and clinical analysis of compatibility of aconiti lateralis radix preparata and pinelliae rhizoma, China Pharm., 27, 8, 91-94 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.