×

Derivation of a solution of dynamic equations of motion for quasicrystals. (English) Zbl 1437.35658

Summary: The dynamic equations of motion in quasicrystals are written in terms of time-dependent partial differential equations of the second order relative to phonon and phason displacements. A method of derivation of a solution (phonon and phason displacements) of the initial value problem is proposed in this paper. In this method, images of the Fourier transform with respect to the 3D space variable of the given phonon, phason forces, and initial displacements are assumed to be vector functions with components which have finite supports for every fixed time variable. The Fourier images of displacements are computed by matrix transformations and solving ordinary differential equations, coefficients and non-homogeneous terms as well as initial data of which depend on 3D Fourier parameter. Finally, phonon and phason displacements are computed by the inverse Fourier transform to obtained Fourier image.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35E15 Initial value problems for PDEs and systems of PDEs with constant coefficients
35C15 Integral representations of solutions to PDEs
74E15 Crystalline structure
65T50 Numerical methods for discrete and fast Fourier transforms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951-1953 · doi:10.1103/PhysRevLett.53.1951
[2] Levine D, Lubensky TC, Ostlund S, Ramaswamy S, Steinhardt PJ, Toner J (1985) Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys Rev Lett 54:1520-1523 · doi:10.1103/PhysRevLett.54.1520
[3] Wang N, Chen H, Kuo KH (1987) Two-dimensional quasicrystal with eight-fold rotational symmetry. Phys Rev Lett 59:1010-1013 · doi:10.1103/PhysRevLett.59.1010
[4] De P, Pelcovits RA (1987) Linear elasticity theory of pentagonal quasicrystals. Phys Lett B 35:8609-8620
[5] Ovidko IA (1998) Plastic deformation and decay of dislocations in quasi-crystals. Mater Sci Eng A 154:29-33 · doi:10.1016/0921-5093(92)90359-9
[6] Wollgarten M, Beyss M, Urban K, Liebertz H, Koster U (1993) Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Phys Rev Lett 71:549-552 · doi:10.1103/PhysRevLett.71.549
[7] Yang WG, Wang RH, Ding DH, Hu CZ (1993) Linear elasticity theory of cubic quasicrystals. Phys Rev B 48:6999-7002 · doi:10.1103/PhysRevB.48.6999
[8] Ding D, Wang R, Yang W, Hu C (1995) General expressions for the elastic displacement fields induced by dislocations in quasicrystals. J Phys Condens Matter 7:5423-5436 · doi:10.1088/0953-8984/7/28/003
[9] Yao D, Wang R, Ding D, Hu C (1997) Evaluation of some useful integrals in the theory of dislocations in quasicrystals. Phys Lett A 225:127-133 · doi:10.1016/S0375-9601(96)00855-9
[10] Lei J, Wang R, Hu C, Ding D (1998) Diffuse scattering from pentagonal quasicrystals. Phys Lett A 247:343-352 · doi:10.1016/S0375-9601(98)00585-4
[11] Lei J, Hu C, Wang R, Ding D (1999) Diffuse scattering from octagonal quasicrystals. J Phys Condens Matter 11:1211-1223 · doi:10.1088/0953-8984/11/5/009
[12] Lei J, Wang R, Hu C, Ding D (2000) Diffuse scattering from dodecagonal quasicrystals. Eur Phys J B 13:21-30 · doi:10.1007/s100510050005
[13] Blaaderen A (2009) Quasicrystals from nanocrystals. Mater Sci 461:892-893
[14] Dubois JM (2000) New prospects from potential applications of quasicrystalline materials. Mater Sci Eng 294-296:4-9 · doi:10.1016/S0921-5093(00)01305-8
[15] Dubois JM (2005) Useful quasicrystals. World Scientific, London · doi:10.1142/3585
[16] Ding DH, Yang WG, Hu CZ, Wang RH (1993) Generalized elasticity theory of quasicrystals. Phys Rev B 48:7003-7010 · doi:10.1103/PhysRevB.48.7003
[17] Hu C, Wang R, Ding D (2000) Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep Prog Phys 63:1-39 · doi:10.1088/0034-4885/63/1/201
[18] Gao Y, Zhao BS (2006) A general treatment of three-dimensional elasticity of quasicrystals by an operator method. Phys Stat Sol B 243:4007-4019 · doi:10.1002/pssb.200541400
[19] Rochal SB, Lorman VL (2002) Minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application to the problem of internal friction in the i-AlPdMn alloy. Phys Rev B 66:144-204 · doi:10.1103/PhysRevB.66.144204
[20] Yakhno VG, Cerdik YH (2011) Computation of the time-dependent Green’s function of three dimensional elastodynamics in 3D quasicrystals. Comput Model Eng Sci 81(4):295-309 · Zbl 1356.74028
[21] Yakhno VG, Cerdik YH (2011) Three dimensional elastodynamics of 2D quasicrystals: the derivation of the time-dependent fundamental solution. Appl Math Model 35:3092-3110 · Zbl 1219.74010 · doi:10.1016/j.apm.2010.12.019
[22] Ortner N, Wagner P (2015) Fundamental solutions of linear partial differential operators: theory and practice. Springer, Switzerland · Zbl 1336.35003 · doi:10.1007/978-3-319-20140-5
[23] Yakhno VG, Cicek B (2014) Computing the electric and magnetic Green’s functions in general electrically gyrotropic media. CMC 44(3):141-166
[24] Yakhno VG, Cerdik YH (2012) Approximate fundamental solutions and wave fronts for general anisotropic materials. Int J Solids Struct 45:853-864 · doi:10.1016/j.ijsolstr.2011.12.010
[25] Cerdik YH (2013) Equations of anisotropic elastodynamics in 3D quasicrystals as a symmetric hyperbolic system: deriving the time-dependent fundamental solutions. Appl Math Model 37:8409-8418 · Zbl 1438.74032 · doi:10.1016/j.apm.2013.03.039
[26] Cerdik YH (2018) On three-dimensional elastodynamic problems of one-dimensional quasicrystala. Wave Random Complex 29(4):614-630 · Zbl 1505.74026
[27] Pan E (2019) Green’s functions for geophysics: a review. Rep Prog Phys. https://doi.org/10.1088/1361-6633/ab1877
[28] Beskos DE (1987) Boundary element methods in dynamic analysis. Appl Mech Rev 40:1-23 · doi:10.1115/1.3149529
[29] Ortner N, Wagner P (2015) Fundamental solutions of linear partial differential operators: theory and practice. Springer, New York · Zbl 1336.35003 · doi:10.1007/978-3-319-20140-5
[30] Vladimirov VS (1971) Equations of mathematical physics. Dekker, New York · Zbl 0231.35002
[31] Kanwal RP (1983) Generalized functions: theory and technique. Academic Press, New York · Zbl 0538.46022
[32] Andersen ND (2004) Real Paley-Wiener theorems for the inverse Fourier transform on a Riemannian symmetric space. Pac J Math 213:1-13 · Zbl 1049.43004 · doi:10.2140/pjm.2004.213.1
[33] Li W, Fan T, Wu Y (2009) Plastic analysis of crack problems in three-dimensional icosahedral quasicrystalline material. Phil Mag 89:2823-2831 · doi:10.1080/14786430903082014
[34] Wang VY, Achenbach JD (1994) Elastodynamic fundamental solutions for anisotropic solids. Geophys J Int 118:384-392 · doi:10.1111/j.1365-246X.1994.tb03970.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.