zbMATH — the first resource for mathematics

Sharp threshold of global existence for nonlinear Schrödinger equation with partial confinement. (English) Zbl 1437.35644
Summary: This paper deals with the nonlinear Schrödinger equation with partial confinement, which may model the attractive Bose-Einstein condensate under a partial trap potential. By using the variational characteristic of the classic nonlinear scalar field equation and the Hamilton conservation, we get the threshold for global existence of the Cauchy problem on mass. Moreover by a novel scaling argument, we prove that this threshold is sharp. In addition, by a numerical computation, we obtain the numerical result of the threshold.
35Q55 NLS equations (nonlinear Schrödinger equations)
35B33 Critical exponents in context of PDEs
35B35 Stability in context of PDEs
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI
[1] Antonelli, P.; Carles, R.; Silva, J. D., Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334, 1, 367-396 (2015) · Zbl 1309.35124
[2] Bao, W.; Cai, Y., Mathematics theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6, 1, 1-135 (2013) · Zbl 1266.82009
[3] Bellazzini, J.; Boussaid, N.; Jeanjean, L.; Visciglia, N., Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353, 229-251 (2017) · Zbl 1367.35150
[4] Bradley, C. C.; Sackett, C. A.; Hulet, R. G., Bose-Einstein condensation of lithium: observation of limited condensate number, Phys. Rev. Lett., 78, 985-989 (1997)
[5] Cazenave, T., (Semilinear Schrödinger Equations. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10 (2003), New York University, Courant Institute of Mathematics Sciences, American Mathematics Society: New York University, Courant Institute of Mathematics Sciences, American Mathematics Society New York Providence, RI) · Zbl 1055.35003
[6] Huepe, C.; Metens, S.; Dewel, G.; Borckmans, P.; Brachet, M. E., Decay rates in attractive Bose-Einstein condensates, Phys. Rev. Lett., 82, 1616-1619 (1999)
[7] Josserand, C.; Pomeau, Y., Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14, 5, R25-R62 (2001) · Zbl 1037.82031
[8] Kwong, M. K., Uniqueness of positive solutions of \(\Delta u - u + u^p = 0\) in \(R^N\), Arch. Ration. Mech. Anal., 105, 243-266 (1989) · Zbl 0676.35032
[9] Lian, W.; Xu, R. Z., Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9, 1, 613-632 (2019) · Zbl 1421.35222
[10] Ogawa, T.; Tsutsumi, Y., Blow-up of \(H^1\) solution for the nonlinear Schrödinger equation, J. Differential Equations, 92, 2, 317-330 (1991) · Zbl 0739.35093
[11] Ohta, M., Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement, Commun. Pure Appl. Anal., 17, 4, 1671-1680 (2018) · Zbl 1397.35287
[12] Strauss, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028
[13] Vétois, J.; Wang, S., Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four, Adv. Nonlinear Anal., 8, 1, 715-724 (2019) · Zbl 1419.35012
[14] Weinstein, M. I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87, 567-576 (1983) · Zbl 0527.35023
[15] Xu, R. Z.; Chen, Y. X.; Yang, Y. B.; Chen, S. H.; Shen, J. H.; Yu, T.; Xu, Z. S., Global well-posedness of semilinear hyperbolic equations, parabolic equations and Schrödinger equations, Electron. J. Differential Equations, 55, 52 (2018)
[16] Xu, R. Z.; Su, J., Global existence and infinite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264, 12, 2732-2763 (2013) · Zbl 1279.35065
[17] Xue, Y. F.; Tang, C. L., Existence of a bound state solution for quasilinear Schrödinger equations, Adv. Nonlinear Anal., 8, 1, 323-338 (2019) · Zbl 1419.35014
[18] Yin, T.; Hsiao, G. C.; Xu, L. W., Boundary intergal equation methods for the two-dimensional fluid-solid interaction problem, SIAM J. Numer. Anal., 55, 5, 2361-2393 (2017) · Zbl 1386.35056
[19] Zhang, J., Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101, 731-746 (2000) · Zbl 0989.82024
[20] Zhang, M. Y.; Ahmed, M. S., Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9, 1, 882-894 (2019) · Zbl 1434.35199
[21] Zhang, L.; Feng, M. F.; Zhang, J., A global divergence-free weak Galerkin method for Brinkman equations, Appl. Numer. Math., 137, 213-229 (2019) · Zbl 1412.65230
[22] Zhang, J.; Zhu, S. H., Sharp energy criteria and singularity of blow-up solutions for the Davey-Stewartson system, Commun. Math. Sci., 17, 3, 653-667 (2019) · Zbl 1428.35544
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.