×

Amplitude Chimera and Chimera death induced by external agents in two-layer networks. (English) Zbl 1437.34047

Summary: We report the emergence of stable amplitude chimeras and chimera death in a two-layer network where one layer has an ensemble of identical nonlinear oscillators interacting directly through local coupling and indirectly through dynamic agents that form the second layer. The nonlocality in the interaction among the dynamic agents in the second layer induces different types of chimera-related dynamical states in the first layer. The amplitude chimeras developed in them are found to be extremely stable, while chimera death states are prevalent for increased coupling strengths. The results presented are for a system of coupled Stuart-Landau oscillators and can, in general, represent systems with short-range interactions coupled to another set of systems with long-range interactions. In this case, by tuning the range of interactions among the oscillators or the coupling strength between two types of systems, we can control the nature of chimera states and the system can also be restored to homogeneous steady states. The dynamic agents interacting nonlocally with long-range interactions can be considered as a dynamic environment or a medium interacting with the system. We indicate how the second layer can act as a reinforcement mechanism on the first layer under various possible interactions for desirable effects.
©2020 American Institute of Physics

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Maksimenko, V. A.; Makarov, V. V.; Bera, B. K.; Ghosh, D.; Dana, S. K.; Goremyko, M. V.; Frolov, N. S.; Koronovskii, A. A.; Hramov, A. E., Phys. Rev. E, 94, 052205 (2016) · doi:10.1103/PhysRevE.94.052205
[2] Majhi, S.; Perc, M.; Ghosh, D., Sci. Rep., 6, 39033 (2016) · doi:10.1038/srep39033
[3] Majhi, S.; Perc, M.; Ghosh, D., Chaos, 27, 073109 (2017) · doi:10.1063/1.4993836
[4] Sawicki, J.; Omelchenko, I.; Zakharova, A.; Schöll, E., Eur. Phys. J. Spec. Top., 227, 1161 (2018) · doi:10.1140/epjst/e2018-800039-y
[5] Watts, D. J.; Strogatz, S. H., Nature, 393, 440 (1998) · Zbl 1368.05139 · doi:10.1038/30918
[6] Pikovsky, A. S.; Rosenblum, M. G.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series (2001), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0993.37002
[7] Saxena, G.; Prasad, A.; Ramaswamy, R., Phys. Rep., 521, 205 (2012) · doi:10.1016/j.physrep.2012.09.003
[8] Koseska, A.; Volkov, E.; Kurths, J., Phys. Rev. Lett., 111, 024103 (2013) · doi:10.1103/PhysRevLett.111.024103
[9] Kuramoto, Y.; Battogtokh, D., Nonlinear Phenom. Complex Syst., 5, 380 (2002)
[10] Koseska, A.; Kapeller, M.; Schöll, E., Phys. Rev. Lett., 112, 154101 (2014) · doi:10.1103/PhysRevLett.112.154101
[11] Banerjee, T., EPL, 110, 60003 (2015) · doi:10.1209/0295-5075/110/60003
[12] Abrams, D. M.; Strogatz, S. H., Phys. Rev. Lett., 93, 174102 (2004) · doi:10.1103/PhysRevLett.93.174102
[13] Ulonska, S.; Omelchenko, I.; Zakharova, A.; Schöll, E., Chaos, 26, 094825 (2016) · doi:10.1063/1.4962913
[14] Gu, C.; St-Yves, G.; Davidsen, J., Phys. Rev. Lett., 111, 134101 (2013) · doi:10.1103/PhysRevLett.111.134101
[15] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Phys. Rev. Lett., 106, 234102 (2011) · doi:10.1103/PhysRevLett.106.234102
[16] Gopal, R.; Chandrasekar, V. K.; Venkatesan, A.; Lakshmanan, M., Phys. Rev. E, 89, 052914 (2014) · doi:10.1103/PhysRevE.89.052914
[17] Bera, B. K.; Ghosh, D.; Lakshmanan, M., Phys. Rev. E, 93, 012205 (2016) · doi:10.1103/PhysRevE.93.012205
[18] Yeldesbay, A.; Pikovsky, A.; Rosenblum, M., Phys. Rev. Lett., 112, 144103 (2014) · doi:10.1103/PhysRevLett.112.144103
[19] Chandrasekar, V. K.; Gopal, R.; Venkatesan, A.; Lakshmanan, M., Phys. Rev. E, 90, 062913 (2014) · doi:10.1103/PhysRevE.90.062913
[20] Laing, C. R., Phys. Rev. E, 92, 050904(R) (2015) · doi:10.1103/PhysRevE.92.050904
[21] Hizanidis, J.; Lazarides, N.; Tsironis, G. P., Phys. Rev. E, 94, 032219 (2016) · doi:10.1103/PhysRevE.94.032219
[22] Chandrasekar, V. K.; Gopal, R.; Senthilkumar, D. V.; Lakshmanan, M., Phys. Rev. E, 94, 012208 (2016) · doi:10.1103/PhysRevE.94.012208
[23] Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkates, A.; Lakshmanan, M., Commun. Nonlinear Sci. Numer. Simul., 59, 30 (2018) · Zbl 1510.34065 · doi:10.1016/j.cnsns.2017.11.005
[24] Hizanidis, J.; Kouvaris, N. E.; Zamora-Lòpez, G.; Díaz-Guilera, A.; Antonopoulos, C. G., Sci. Rep., 6, 19845 (2016) · doi:10.1038/srep19845
[25] Tinsley, M.; Nkomo, S.; Showalter, K., Nat. Phys., 8, 662 (2012) · doi:10.1038/nphys2371
[26] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Nat. Phys., 8, 658 (2012) · doi:10.1038/nphys2372
[27] Martens, E. A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O., Proc. Natl. Acad. Sci. U.S.A., 110, 10563 (2013) · doi:10.1073/pnas.1302880110
[28] Nkomo, S.; Tinsley, M. R.; Showalter, K., Phys. Rev. Lett., 110, 244102 (2013) · doi:10.1103/PhysRevLett.110.244102
[29] Wickramasinghe, M.; Kiss, I. Z., PLoS One, 8, e80586 (2013) · doi:10.1371/journal.pone.0080586
[30] Wickramasinghe, M.; Kiss, I. Z., Phys. Chem. Chem. Phys., 16, 18360 (2014) · doi:10.1039/C4CP02249A
[31] Gambuzza, L. V.; Buscarino, A.; Chessari, S.; Fortuna, L.; Meucci, R.; Frasca, M., Phys. Rev. E, 90, 032905 (2014) · doi:10.1103/PhysRevE.90.032905
[32] Rosin, D. P.; Rontani, D.; Haynes, N. D.; Schöll, E.; Gauthier, D. J., Phys. Rev. E, 90, 030902(R) (2014) · doi:10.1103/PhysRevE.90.030902
[33] Viktorov, E. A.; Habruseva, T.; Hegarty, S. P.; Huyet, G.; Kelleher, B., Phys. Rev. Lett., 112, 224101 (2014) · doi:10.1103/PhysRevLett.112.224101
[34] Sethia, G. C.; Sen, A.; Johnston, G. L., Phys. Rev. E, 88, 042917 (2013) · doi:10.1103/PhysRevE.88.042917
[35] Sheeba, J. H.; Chandrasekar, V. K.; Lakshmanan, M., Phys. Rev. E, 79, 055203(R) (2009) · doi:10.1103/PhysRevE.79.055203
[36] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Y., Sci. Rep., 4, 6379 (2014) · doi:10.1038/srep06379
[37] Bera, B. K.; Ghosh, D.; Banerjee, T., Phys. Rev. E, 94, 012215 (2016) · doi:10.1103/PhysRevE.94.012215
[38] Chouzouris, T.; Omelchenko, I.; Zakharova, A.; Hlinka, J.; Jiruska, P.; Schö, E., Chaos, 28, 045112 (2018) · doi:10.1063/1.5009812
[39] Abrams, D. M.; Mirollo, R.; Strogatz, S. H.; Wiley, D. A., Phys. Rev. Lett., 101, 084103 (2008) · doi:10.1103/PhysRevLett.101.084103
[40] Rottenberg, N. C.; Amlaner, C. J.; Lima, S. L., Neurosci. Biobehav. Rev., 24, 817 (2000) · doi:10.1016/S0149-7634(00)00039-7
[41] Rothkegel, A.; Lehnertz, K., New J. Phys., 16, 055006 (2014) · doi:10.1088/1367-2630/16/5/055006
[42] Uhlhaas, P. J.; Singer, W., Neuron, 52, 155 (2006) · doi:10.1016/j.neuron.2006.09.020
[43] Kuznetsov, A.; Kærn, M.; Kopell, N., SIAM J. Appl. Math., 65, 392 (2004) · Zbl 1090.34031 · doi:10.1137/S0036139903436029
[44] Toth, R.; Taylor, A. F.; Tinsley, M. R., J. Phys. Chem. B, 110, 10170 (2006) · doi:10.1021/jp060732z
[45] Javaloyes, J.; Perrin, M.; Politi, A., Phys. Rev. E, 78, 011108 (2008) · doi:10.1103/PhysRevE.78.011108
[46] Katriel, G., Physica D, 237, 2933 (2008) · Zbl 1184.34060 · doi:10.1016/j.physd.2008.04.015
[47] Resmi, V.; Ambika, G.; Amritkar, R. E., Phys. Rev. E, 84, 046212 (2011) · doi:10.1103/PhysRevE.84.046212
[48] Resmi, V.; Ambika, G.; Amritkar, R. E.; Rangarajan, G., Phys. Rev. E, 85, 046211 (2012) · doi:10.1103/PhysRevE.85.046211
[49] Ghosh, D.; Banerjee, T., Phys. Rev. E, 90, 062908 (2014) · doi:10.1103/PhysRevE.90.062908
[50] Sharma, P. R.; Kamal, N. K.; Verma, U. K.; Suresh, K.; Thamilmaran, K.; Shrimali, M. D., Phys. Lett. A, 380, 3178 (2016) · doi:10.1016/j.physleta.2016.07.041
[51] Sharma, A.; Verma, U. K.; Shrimali, M. D., Phys. Rev. E, 94, 062218 (2016) · doi:10.1103/PhysRevE.94.062218
[52] Verma, U. K.; Kamal, N. K.; Shrimali, M. D., Chaos Solitons Fractals, 110, 55 (2018) · doi:10.1016/j.chaos.2018.03.009
[53] Verma, U. K.; Sharma, A.; Kamal, N. K.; Shrimali, M. D., Phys. Lett. A, 382, 2122 (2018) · doi:10.1016/j.physleta.2018.05.040
[54] Verma, U. K.; Sharma, A.; Kamal, N. K.; Shrimali, M. D., Chaos, 29, 063127 (2019) · Zbl 1416.34044 · doi:10.1063/1.5054306
[55] Verma, U. K.; Chaurasia, S. S.; Sinha, S., Phys. Rev. E, 100, 032203 (2019) · doi:10.1103/PhysRevE.100.032203
[56] Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M., Phys. Rev. E, 97, 032207 (2018) · doi:10.1103/PhysRevE.97.032207
[57] Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V., Phys. Rev. E, 98, 032301 (2018) · doi:10.1103/PhysRevE.98.032301
[58] Garcia-Ojalvo, J.; Elowitz, M. B.; Strogatz, S. H., Proc. Natl. Acad. Sci. U.S.A., 101, 10955 (2004) · Zbl 1064.92019 · doi:10.1073/pnas.0307095101
[59] Taylor, A.; Tinsley, M.; Wang, F.; Huang, Z.; Showalter, K., Science, 323, 614 (2009) · doi:10.1126/science.1166253
[60] Tinsley, M. R.; Taylor, A. F.; Huang, Z.; Wang, F.; Showalter, K., Physica D, 239, 785 (2010) · doi:10.1016/j.physd.2009.08.001
[61] Schwab, D. J.; Baetica, A.; Mehta, P., Physica D, 241, 1782 (2012) · Zbl 1401.92014 · doi:10.1016/j.physd.2012.08.005
[62] Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M., Phys. Rev. E, 93, 052213 (2016) · doi:10.1103/PhysRevE.93.052213
[63] Tumash, L.; Zakharova, A.; Lehnert, J.; Just, W.; Schöll, E., Europhys. Lett., 117, 20001 (2017) · doi:10.1209/0295-5075/117/20001
[64] Ullner, E.; Zaikin, A.; Volkov, E. I.; García-Ojalvo, J., Phys. Rev. Lett., 99, 148103 (2007) · doi:10.1103/PhysRevLett.99.148103
[65] Dotson, N. M.; Gray, C. M., Phys. Rev. E, 94, 042420 (2016) · doi:10.1103/PhysRevE.94.042420
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.