×

zbMATH — the first resource for mathematics

The metric dimension of the enhanced power graph of a finite group. (English) Zbl 1437.05098

MSC:
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aalipour, G., Akbari, S., Cameron, P. J., Nikandish, R. and Shaveisi, F., On the structure of the power graph and the enhanced power graph of a group, Electron. J. Combin.24 (2017) #P3.16. · Zbl 1369.05059
[2] Abawajy, J., Kelarev, A. and Chowdhury, M., Power graphs: A survey, Electron. J. Graph Theory Appl.1 (2013) 125-147. · Zbl 1306.05090
[3] Abawajy, J., Kelarev, A. V., Miller, M. and Ryan, J., Rees semigroups of digraphs for classification of data, Semigroup Forum92 (2016) 121-134. · Zbl 1347.20066
[4] Bailey, R. F. and Cameron, P. J., Base size, metric dimension and other invariants of groups and graphs, Bull. Lond. Math. Soc.43 (2011) 209-242. · Zbl 1220.05030
[5] Baishya, S. J., A note on finite C-tidy groups, Int. J. Group Theory2 (2013) 9-17. · Zbl 1306.20023
[6] Bera, S. and Bhuniya, A. K., On enhanced power graphs of finite groups, J. Algebra Appl.17 (2018) 1850146. · Zbl 1392.05053
[7] Brauer, R. and Fowler, K. A., On groups of even order, Ann. Math.62 (1955) 567-583. · Zbl 0067.01004
[8] Bubboloni, D., Iranmanesh, M. A. and Shaker, S. M., On some graphs associated with the finite alternating groups, Commun. Algebra45 (2017) 5355-5373. · Zbl 1404.05076
[9] Bubboloni, D., Iranmanesh, M. A. and Shaker, S. M., Quotient graphs for power graphs, Rend. Semin. Mat. Univ. Padova138 (2017) 61-89. · Zbl 1387.05109
[10] Cáceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C. and Wood, D. R., On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math.21 (2007) 423-441. · Zbl 1139.05314
[11] Cameron, P. J., The power graph of a finite group, II, J. Group Theory13 (2010) 779-783. · Zbl 1206.20023
[12] Cameron, P. J. and Ghosh, S., The power graph of a finite group, Discrete Math.311 (2011) 1220-1222. · Zbl 1276.05059
[13] Chakrabarty, I., Ghosh, S. and Sen, M. K., Undirected power graphs of semigroups, Semigroup Forum78 (2009) 410-426. · Zbl 1207.05075
[14] Chartrand, G., Eroh, L., Johnson, M. A. and Oellermann, O. R., Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math.105 (2000) 99-113. · Zbl 0958.05042
[15] L. A. Dupont, D. G. Mendoza and M. Rodríguez, The rainbow connection number of enhanced power graph, arXiv:1708.07598 [math.CO].
[16] Feng, M., Ma, X. and Wang, K., The structure and metric dimension of the power graph of a finite group, Eur. J. Combin.43 (2015) 82-97. · Zbl 1301.05142
[17] Feng, M., Ma, X. and Wang, K., The full automorphism group of the power (di)graph of a finite group, Eur. J. Combin.52 (2016) 197-206. · Zbl 1327.05242
[18] Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979). · Zbl 0411.68039
[19] Gorenstein, D., Finite Groups (Chelsea Publishing Co., New York, 1980). · Zbl 0463.20012
[20] Harary, F. and Melter, R. A., On the metric dimension of a graph, Ars Combin.2 (1976) 191-195. · Zbl 0349.05118
[21] Hernando, C., Mora, M., Pelayo, I. M., Seara, C. and Wood, D. R., Extremal graph theory for metric dimension and diameter, Electron. J. Combin.17 (2010) #R30. · Zbl 1219.05051
[22] Kelarev, A. V., Graph Algebras and Automata (Marcel Dekker, New York, 2003). · Zbl 1070.68097
[23] Kelarev, A. V., Labelled Cayley graphs and minimal automata, Australas. J. Combin.30 (2004) 95-101. · Zbl 1152.68482
[24] Kelarev, A. V. and Quinn, S. J., A combinatorial property and power graphs of groups, Contrib. Gen. Algebra12 (2000) 229-235. · Zbl 0966.05040
[25] Kelarev, A. V. and Quinn, S. J., Directed graphs and combinatorial properties of semigroups, J. Algebra251 (2002) 16-26. · Zbl 1005.20043
[26] Kelarev, A. V. and Quinn, S. J., A combinatorial property and power graphs of semigroups, Comment. Math. Uni. Carolinae45 (2004) 1-7. · Zbl 1099.05042
[27] Kelarev, A. V., Quinn, S. J. and Smolikova, R., Power graphs and semigroups of matrices, Bull. Austral. Math. Soc.63 (2001) 341-344. · Zbl 1043.20042
[28] Kelarev, A. V., Ryan, J. and Yearwood, J., Cayley graphs as classifiers for data mining: The inuence of asymmetries, Discret. Math.309 (2009) 5360-5369. · Zbl 1206.05050
[29] Khuller, S., Raghavachari, B. and Rosenfeld, A., Landmarks in graphs, Discrete Appl. Math.70 (1996) 217-229. · Zbl 0865.68090
[30] Ma, X. and Feng, M., On the chromatic number of the power graph of a finite group, Indag. Math. (NS)26 (2015) 626-633. · Zbl 1317.05063
[31] Ma, X., Feng, M. and Wang, K., The rainbow connection number of the power graph of a finite group, Graphs Combin.32 (2016) 1495-1504. · Zbl 1342.05063
[32] Ma, X., Feng, M. and Wang, K., The power index of a graph, Graphs Combin.33 (2017) 1381-1391. · Zbl 1386.05087
[33] Ma, X., Feng, M. and Wang, K., The strong metric dimension of the power graph of a finite group, Discrete Appl. Math.239 (2018) 159-164. · Zbl 1382.05023
[34] Johnson, D. L., Topics in the Theory of Group Presentations, , Vol. 42 (Cambridge University Press, 1980). · Zbl 0437.20026
[35] K. O’Bryant, D. Patrick, L. Smithline and E. Wepsic, Some facts about cycles and tidy groups, Technical Report, MS-TR 92-04, Rose-Hulman Institute of Technology, Terre Haute, Ind, USA (1992).
[36] D. Patrick and E. Wepsic, Cyclicizers, centralizers and normalizers, Technical Report, MS-TR 91-05, Rose-Hulman Institute of Technology, Terre Haute, Ind, USA (1991).
[37] Slater, P. J., Leaves of trees, Congr. Numer.14 (1975) 549-559.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.