×

A hierarchical approach to the a posteriori error estimation of isogeometric Kirchhoff plates and Kirchhoff-Love shells. (English) Zbl 1436.74085

Summary: This work focuses on the development of a posteriori error estimates for fourth-order, elliptic, partial differential equations. In particular, we propose a novel algorithm to steer an adaptive simulation in the context of Kirchhoff plates and Kirchhoff-Love shells by exploiting the local refinement capabilities of hierarchical B-splines. The method is based on the solution of an auxiliary residual-like variational problem, formulated by means of a space of localized spline functions. This space is characterized by \(C^1\) continuous B-splines with compact support on each active element of the hierarchical mesh. We demonstrate the applicability of the proposed estimator to Kirchhoff plates and Kirchhoff-Love shells by studying several benchmark problems which exhibit both smooth and singular solutions. In all cases, we obtain optimal asymptotic rates of convergence for the error measured in the energy norm and an excellent approximation of the true error.

MSC:

74S22 Isogeometric methods applied to problems in solid mechanics
74K20 Plates
74K25 Shells
65D07 Numerical computation using splines
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D17 Computer-aided design (modeling of curves and surfaces)

Software:

ISOGAT; GeoPDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[2] Kiendl, J.; Bletzinger, K.-U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49, 3902-3914 (2009) · Zbl 1231.74422
[3] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 49, 4333-4352 (2008) · Zbl 1194.74524
[4] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis (2009), John Wiley & Sons, Ltd: John Wiley & Sons, Ltd Chichester, UK · Zbl 1378.65009
[5] Special Issue on Isogeometric Analysis: Progress and Challenges, Computer methods in applied mechanics and engineering, Elsevier, 2017.
[6] Forsey, D. R.; Bartels, R. H., Hierarchical B-spline refinement, (Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques. Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’88 (1988), ACM: ACM New York, NY, USA), 205-212
[7] Greiner, G.; Hormann, K., Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines, (Surface Fitting and Multiresolution Methods (1997), Vanderbilt University Press), 163-172 · Zbl 0937.65019
[8] Kraft, R., Adaptive and linearly independent multilevel B-splines, (Surface Fitting and Multiresolution Methods (1997), Vanderbilt University Press) · Zbl 0937.65014
[9] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design, vol. 29, 7, 485-498 (2012) · Zbl 1252.65030
[10] Giannelli, C.; Jüttler, B.; Kleiss, S. K.; Mantzaflaris, A.; Simeon, B.; Špeh, J., THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 299, 337-365 (2016) · Zbl 1425.65026
[11] Bazilevs, Y.; Calo, V.; Cottrell, J.; Evans, J.; Hughes, T. J.R.; Lipton, S.; Scott, M.; Sederberg, T., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5, 229-263 (2010), Computational Geometry and Analysis · Zbl 1227.74123
[12] Scott, M.; Li, X.; Sederberg, T.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213-216, 206-222 (2012) · Zbl 1243.65030
[13] Beirão da Veiga, L.; Buffa, A.; Sangalli, G.; Vázquez, R., Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties, Math. Models Methods Appl. Sci., 23, 11, 1979-2003 (2013) · Zbl 1270.65009
[14] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 3, 331-356 (2013) · Zbl 1264.41011
[15] Bressan, A., Some properties of LR-splines, Comput. Aided Geom. Design, 30, 8, 778-794 (2013) · Zbl 1284.65024
[16] Lorenzo, G.; Scott, M.; Tew, K.; Hughes, T. J.R.; Gómez, H., Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth, Comput. Methods Appl. Mech. Engrg., 319, 515-548 (2017) · Zbl 1439.74203
[17] Garau, E. M.; Vázquez, R., Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines, Appl. Numer. Math., 123, 58-87 (2018) · Zbl 1377.65149
[18] Hennig, P.; Ambati, M.; Lorenzis, L. D.; Kästner, M., Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines, Comput. Methods Appl. Mech. Engrg., 334, 313-336 (2018) · Zbl 1440.65209
[19] Carraturo, M.; Giannelli, C.; Reali, A.; Vázquez, R., Suitably graded THB-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes, Comput. Methods Appl. Mech. Engrg., 348, 660-679 (2019) · Zbl 1440.74379
[20] Babuška, I., A-posteriori error estimation for the finite element method, (Wunderlich, W.; Stein, E.; Bathe, K.-J., Nonlinear Finite Element Analysis in Structural Mechanics (1981), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 3-10 · Zbl 0479.73060
[21] Ainsworth, M.; Oden, J. T., A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg., 142, 1, 1-88 (1997) · Zbl 0895.76040
[22] Verfürth, R., A Posteriori Error Estimation Techniques for Finite Element Methods, A Posteriori Error Estimation Techniques for Finite Element Methods (2013), OUP Oxford · Zbl 1279.65127
[23] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 264-275 (2010), Computational Geometry and Analysis · Zbl 1227.74125
[24] Kumar, M.; Kvamsdal, T.; Johannessen, K. A., Simple a posteriori error estimators in adaptive isogeometric analysis, Comput. Math. Appl., 70, 7, 1555-1582 (2015), High-Order Finite Element and Isogeometric Methods · Zbl 1443.65355
[25] Kumar, M.; Kvamsdal, T.; Johannessen, K. A., Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 316, 1086-1156 (2017), Special Issue on Isogeometric Analysis: Progress and Challenges · Zbl 1439.74437
[26] Kleiss, S. K.; Tomar, S. K., Guaranteed and sharp a posteriori error estimates in isogeometric analysis, Comput. Math. Appl., 70, 3, 167-190 (2015) · Zbl 1443.65353
[27] Anitescu, C.; Hossain, M. N.; Rabczuk, T., Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes, Comput. Methods Appl. Mech. Engrg., 328, 638-662 (2018) · Zbl 1439.65011
[28] Buffa, A.; Giannelli, C., Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci., 26, 01, 1-25 (2016) · Zbl 1336.65181
[29] Gantner, G.; Haberlik, D.; Praetorius, D., Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines, Math. Models Methods Appl. Sci., 27, 14, 2631-2674 (2017) · Zbl 1376.41006
[30] Buffa, A.; Garau, E. M., A posteriori error estimators for hierarchical B-spline discretizations, Math. Models Methods Appl. Sci., 28, 08, 1453-1480 (2018) · Zbl 1398.65291
[31] Bank, R. E.; Smith, R. K., A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal., 30, 4, 921-935 (1993) · Zbl 0787.65078
[32] Vuong, A. V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49-52, 3554-3567 (2011) · Zbl 1239.65013
[33] Maurin, F.; Greco, F.; Coox, L.; Vandepitte, D.; Desmet, W., Isogeometric collocation for Kirchhoff-Love plates and shells, Comput. Methods Appl. Mech. Engrg., 329, 396-420 (2018) · Zbl 1439.74449
[34] D’Angella, D.; Kollmannsberger, S.; Rank, E.; Reali, A., Multi-level Bézier extraction for hierarchical local refinement of Isogeometric Analysis, Comput. Methods Appl. Mech. Engrg. (2018) · Zbl 1439.65155
[35] Piegl, L.; Tiller, W., The NURBS Book, Monographs in Visual Communications (1995), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 0828.68118
[36] Hennig, P.; Müller, S.; Kästner, M., Bézier extraction and adaptive refinement of truncated hierarchical NURBS, Comput. Methods Appl. Mech. Engrg., 305, 316-339 (2016) · Zbl 1425.65031
[37] Reali, A.; Gómez, H., An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 284, 623-636 (2015), Isogeometric Analysis Special Issue · Zbl 1423.74553
[38] Cirak, F., Subdivision shells, (Motasoares, C. A.; Martins, J. A.C.; Rodrigues, H. C.; Ambrósio, J. A.C.; Pina, C. A.B.; Motasoares, C. M.; Pereira, E. B.R.; Folgado, J., III European Conference on Computational Mechanics (2006), Springer Netherlands: Springer Netherlands Dordrecht), 395
[39] Ciarlet, P., The Finite Element Method for Elliptic Problems (2002), Society for Industrial and Applied Mathematics · Zbl 0999.65129
[40] Apostolatos, A.; Breitenberger, M.; Wüchner, R.; Bletzinger, K.-U., Isogeometric analysis and applications 2014, ((2015), Springer International Publishing: Springer International Publishing Cham), 73-101 · Zbl 1382.74115
[41] Buffa, A.; Giannelli, C.; Morgenstern, P.; Peterseim, D., Complexity of hierarchical refinement for a class of admissible mesh configurations, Comput. Aided Geom. Design, 47, 83-92 (2016), SI: New Developments Geometry · Zbl 1418.65011
[42] Buffa, A.; Giannelli, C., Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates, Math. Models Methods Appl. Sci., 27, 14, 2781-2802 (2017) · Zbl 1376.41004
[43] Bracco, C.; Giannelli, C.; Vázquez, R., Refinement algorithms for adaptive isogeometric methods with hierarchical splines, Axioms, 7, 3 (2018) · Zbl 1432.65015
[44] Vázquez, R., A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0, Comput. Math. Appl., 72, 3, 523-554 (2016) · Zbl 1359.65270
[45] Quarteroni, A. M.; Valli, A., Numerical Approximation of Partial Differential Equations (2008), Springer Publishing Company, Incorporated, first ed. 1994 · Zbl 0803.65088
[46] Bazilevs, Y.; Beirão Da Veiga, L.; Cotrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 07, 1031-1090 (2006) · Zbl 1103.65113
[47] Reddy, J., Theory and Analysis of Elastic Plates and Shells, Second Edition, Series in Systems and Control (2006), Taylor & Francis
[48] Tornberg, A.-K.; Engquist, B., Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200, 2, 462-488 (2004) · Zbl 1115.76392
[49] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells, Engineering societies monographs (1959), McGraw-Hill · Zbl 0114.40801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.