×

Sustainable harvesting policies under long-run average criteria: near optimality. (English) Zbl 1436.60057

Summary: This paper develops near-optimal sustainable harvesting strategies for the predator in a predator-prey system. The objective function is of long-run average per unit time type in the path-wise sense. To date, ecological systems under environmental noise are usually modeled as stochastic differential equations driven by a Brownian motion. Recognizing that the formulation using a Brownian motion is only an idealization, in this paper, it is assumed that the environment is subject to disturbances characterized by a jump process with rapid jump rates. Under broad conditions, it is shown that the systems under consideration can be approximated by a controlled diffusion system. Based on the limit diffusion system, control policies of the original systems are constructed. Such an approach enables us to develop sustainable harvesting policies leading to near optimality. To treat the underlying problems, one of the main difficulties is due to the long-run average objective function. This in turn, requires the handling of a number of issues related to ergodicity. New approaches are developed to obtain the tightness of the underlying processes based on the population dynamic systems.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
92D25 Population dynamics (general)
93E20 Optimal stochastic control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alvarez, LHR, Singular stochastic control in the presence of a state-dependent yield structure, Stoch. Process. Appl., 86, 323-343 (2006) · Zbl 1028.60082 · doi:10.1016/S0304-4149(99)00102-7
[2] Alvarez, LHR; Lungu, E.; Øksendal, B., Optimal multi-dimensional stochastic harvesting with density-dependent prices, Afr. Mat., 27, 3-4, 427-442 (2016) · Zbl 1386.60196 · doi:10.1007/s13370-015-0357-0
[3] Anderson, LG; Seijo, JC, Bioeconomics of Fisheries Management (2010), New York: Wiley, New York
[4] Arapostathis, A.; Borkar, VS; Ghosh, MK, Ergodic Control of Diffusion Processes (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1236.93137
[5] Azar, C.; Holmberg, J.; Lindgren, K., Stability analysis of harvesting in a predator-prey model, J. Theor. Biol., 174, 1, 13-19 (1995) · doi:10.1006/jtbi.1995.0076
[6] Beddington, JR; Cooke, JG, Harvesting from a prey-predator complex, Ecol. Modell., 14, 155-177 (1982) · doi:10.1016/0304-3800(82)90016-3
[7] Benaïm, M.: Stochastic persistence, preprint · Zbl 0955.62085
[8] Benaïm, M.; Lobry, C., Lotka Volterra in fluctuating environment or “how switching between beneficial environments can make survival harder”, Ann. Appl. Probab., 26, 6, 3754-3785 (2016) · Zbl 1358.92075 · doi:10.1214/16-AAP1192
[9] Blankenship, G.; Papanicolaou, GC, Stability and control of stochastic systems with wide-band noise disturbances. I, SIAM J. Appl. Math., 34, 3, 437-476 (1978) · Zbl 0392.93040 · doi:10.1137/0134036
[10] Clark, CW, Mathematical Bioeconomics: The Mathematics of Conservation (2010), New York: Wiley, New York
[11] da Silveira Costa, MI, Predator harvesting in stage dependent predation models: insights from a threshold management policy, Math. Biosci., 216, 1, 40-46 (2008) · Zbl 1151.92036 · doi:10.1016/j.mbs.2008.08.006
[12] Du, NH; Nguyen, DH, Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment, Commun. Pure Appl. Anal., 13, 6, 2693-2712 (2014) · Zbl 1308.34061 · doi:10.3934/cpaa.2014.13.2693
[13] Du, NH; Nguyen, DH; Yin, G., Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53, 1, 187-202 (2016) · Zbl 1338.34091 · doi:10.1017/jpr.2015.18
[14] Fleming, WH; Rishel, R., Deterministic and Stochastic Optimal Control (1975), New York: Springer, New York · Zbl 0323.49001
[15] Hening, A., Nguyen, D.: Coexistence and extinction for stochastic Kolmogorov systems, to appear in Ann. Appl. Probab · Zbl 1410.60094
[16] Hening, A.; Nguyen, D.; Yin, G., Stochastic population growth in spatially heterogeneous environments: the density-dependent case, J. Math. Biol., 76, 697-754 (2018) · Zbl 1392.92076 · doi:10.1007/s00285-017-1153-2
[17] Khasminskii, R.Z.: Stochastic Stability of Differential Equations, second ed. Stochastic Modelling and Applied Probability, vol. 66. Springer, Heidelberg (2012). with contributions by G. N. Milstein and M. B. Nevelson · Zbl 1241.60002
[18] Kushner, HJ; Runggaldier, W., Nearly optimal state feedback controls for stochastic systems with wideband noise disturbances, SIAM J. Control Optim., 25, 2, 298-315 (1987) · Zbl 0621.93079 · doi:10.1137/0325018
[19] Liu, M.; Bai, C., Optimal harvesting policy for a stochastic predator-prey model, Appl. Math. Lett., 34, 22-26 (2014) · Zbl 1314.92133 · doi:10.1016/j.aml.2014.03.006
[20] Liu, M.; Bai, C., Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 73, 3, 597-625 (2016) · Zbl 1347.92067 · doi:10.1007/s00285-016-0970-z
[21] Lungu, EM; Øksendal, B., Optimal harvesting from interacting populations in a stochastic environment, Bernoulli, 7, 3, 527-539 (2001) · Zbl 1010.93107 · doi:10.2307/3318500
[22] Luo, Q.; Mao, X., Stochastic population dynamics under regime switching. II, J. Math. Anal. Appl., 355, 2, 577-593 (2009) · Zbl 1162.92032 · doi:10.1016/j.jmaa.2009.02.010
[23] Milner-Gulland, EJ; Mace, R., Conservation of Biological Resources (2009), New York: Wiley, New York
[24] Nguyen, DH; Yin, G., Coexistence and exclusion of stochastic competitive Lotka-Volterra models, J. Differ. Equ., 262, 1192-1225 (2017) · Zbl 1367.34065 · doi:10.1016/j.jde.2016.10.005
[25] Nguyen, D.H., Yin, G.: Stability of regime-switching diffusion systems with discrete states belonging to a countable set, submitted · Zbl 1401.93158
[26] Rudnicki, R., Long-time behaviour of a stochastic prey-predator model, Stoch. Process. Appl., 108, 1, 93-107 (2003) · Zbl 1075.60539 · doi:10.1016/S0304-4149(03)00090-5
[27] Schreiber, SJ; Benaïm, M.; Atchade, KAS, Persistence in fluctuating environments, J. Math. Biol., 62, 5, 655-683 (2011) · Zbl 1232.92075 · doi:10.1007/s00285-010-0349-5
[28] Skorokhod, AV, Asymptotic Methods in the Theory of Stochastic Differential Equations (1989), Providence: American Mathematical Society, Providence · Zbl 0695.60055
[29] Song, Q.; Stockbridge, RH; Zhu, C., On optimal harvesting problems in random environments, SIAM J. Control Optim., 49, 2, 859-889 (2011) · Zbl 1217.93185 · doi:10.1137/100797333
[30] Tran, K.; Yin, G., Optimal harvesting strategies for stochastic competitive Lotka-Volterra ecosystems, Automatica, 55, 236-246 (2015) · Zbl 1377.93182 · doi:10.1016/j.automatica.2015.03.017
[31] Xiao, DM; Li, WX; Han, MA, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324, 14-29 (2006) · Zbl 1122.34035 · doi:10.1016/j.jmaa.2005.11.048
[32] Zhu, C.; Yin, G., On strong Feller, recurrence, and weak stabilization of regime-switching diffusions, SIAM J. Control Optim., 48, 2003-2031 (2009) · Zbl 1282.93201 · doi:10.1137/080712532
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.