×

Lindelöf tightness and the Dedekind-MacNeille completion of a regular \(\sigma\)-frame. (English) Zbl 1436.06020

Summary: Tightness is a notion that arose in an attempt to understand the reverse reflection problem: given a monoreflection of a category onto a subcategory, determine which subobjects of an object in the subcategory reflect to it – those which do are termed tight. Thus tightness can be seen as a strong density property. We present an analysis of \(\lambda\)-tightness, tightness with respect to the localic Lindelöf reflection. Leading to this analysis, we prove that the normal, or Dedekind-MacNeille, completion of a regular \(\sigma\)-frame \(A\) is a frame. Moreover, the embedding of \(A\) in its normal completion is the Bruns-Lakser injective hull of \(A\) in the category of meet semilattices and semilattice homomorphisms. Since every regular \(\sigma\)-frame is the cozero part of a regular Lindelöf frame, this result points towards \(\lambda\)-tightness. For any regular Lindelöf frame \(L\), the normal completion of Coz \(L\) embeds in \(L\) as the sublocale generated by Coz \(L\). Although this completion is clearly contained in every sublocale having the same cozero part as \(L\), we show by example that its cozero part need not be the same as the cozero part as \(L\). We prove that a sublocale \(S\) is \(\lambda\)-tight in \(L\) iff \(S\) has the same cozero part as \(L\). The aforementioned counterexample shows that the completion of Coz \(L\) is not always \(\lambda\)-tight in \(L\); on the other hand, we present a large class of locales for which this is the case.

MSC:

06D22 Frames, locales
06B23 Complete lattices, completions
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18F60 Categories of topological spaces and continuous mappings
54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ball, R.N., Banaschewski, B., Jakl, T., Pultr, A. and Walters-Wayland, J.L., Tightness relative to some (co)reflections in topology, Questiones Mathematicae, to appear. · Zbl 1436.06019
[2] Ball, R. N.; Pultr, A., Extending semilattices to frames using sites and coverages, Math. Slovaca, 64, 3, 527-544 (2014) · Zbl 1332.06026 · doi:10.2478/s12175-014-0223-9
[3] Ball, R. N.; Pultr, A.; Walters-Wayland, J. L., The Dedekind-MacNeille site completion of a meet semilattice, Algebra Universalis, 76, 2, 183-197 (2016) · Zbl 1412.06008 · doi:10.1007/s00012-016-0397-9
[4] Ball, R. N.; Picado, J.; Pultr, A., Notes on exact meets and joins, Appl. Cat. Struct., 22, 699-714 (2014) · Zbl 1323.06007 · doi:10.1007/s10485-013-9345-4
[5] Ball, R. N.; Walters-Wayland, J. L., Cand \(C^∗\)-quotients in pointfree topology, Dissertationes Mathematicae, (Rozpravy Mat.), 412, 1-62 (2002) · Zbl 1012.54025 · doi:10.4064/dm412-0-1
[6] Ball, R. N.; Walters-Wayland, J. L.; Zenk, E., The P -frame reflection of a completely regular frame, Top. Appl., 158, 1778-1794 (2011) · Zbl 1230.06006 · doi:10.1016/j.topol.2011.06.013
[7] Banaschewski, B.; Dube, T.; Gilmour, C. R.A.; Walters-Wayland, J. L., Oz in pointfree topology, Quest. Math., 2, 215-227 (2009) · Zbl 1182.06002 · doi:10.2989/QM.2009.32.2.4.797
[8] Banaschewski, B.; Gilmour, C. R.A., Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolinae, 37, 3, 579-589 (1966)
[9] Banaschewski, B.; Gilmour, C. R.A., Realcompactness and the cozero part of a frame, Appl. Cat. Structures, 9, 395-417 (2001) · Zbl 0978.54019 · doi:10.1023/A:1011225712426
[10] Banaschewski, B.; Pultr, A., A contructive view of complete regularity, Kyungpook Math. Journal, 43, 257-262 (2002) · Zbl 1060.54015
[11] Bruns, G.; Lakser, H., Injective hulls of semilattices, Canad. Math. Bull., 13, 115-118 (1970) · Zbl 0212.03801 · doi:10.4153/CMB-1970-023-6
[12] Cornish, W. H., The kernels of skeletal congruences on a distributive lattice, Math. Nachr., 84, 219-228 (1978) · Zbl 0425.06002 · doi:10.1002/mana.19780840113
[13] Dube, T., Some Notes on Cand \(C^∗\)-quotients of Frames, Order, 25, 369-375 (2008) · Zbl 1166.06004 · doi:10.1007/s11083-008-9100-x
[14] Dube, T., Almost P-frames, Algebra Universalis, 60, 145-162 (2009) · Zbl 1186.06006 · doi:10.1007/s00012-009-2093-5
[15] Gillman, L.; Henriksen, M., Concerning rings of continuous functions, Trans. Amer. Math. Soc., 77, 340-362 (1954) · Zbl 0058.10003 · doi:10.1090/S0002-9947-1954-0063646-5
[16] Isbell, J. R., Atomless parts of spaces, Math. Scand, 31, 5-32 (1972) · Zbl 0246.54028 · doi:10.7146/math.scand.a-11409
[17] Joyal, A. and Tierney, M., An extension of the Galois theory of Grothendieck, Mem. Amer Math. Soc., Vol. 309, AMS, Providence, RI, 1984. · Zbl 0541.18002
[18] Johnstone, P. T., Stone spaces, 3 (1982), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0499.54001
[19] Macneille, H. M., Partially ordered sets, Trans. Amer. Math. Soc., 42, 416-460 (1937) · JFM 63.0833.04 · doi:10.1090/S0002-9947-1937-1501929-X
[20] Picado, J.; Pultr, A., Frames and Locales: Topology without points, 28 (2012), Springer: Springer, Basel · Zbl 1231.06018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.