×

zbMATH — the first resource for mathematics

Let none but geometers enter here. (\(\mathrm{M} \eta\delta\varepsilon\overset{,}{\iota}\varsigma\; \overset{,}{\alpha}\lambda\varepsilon\omega\mu\overset{,}{\varepsilon}\tau\rho\eta\tau o\varsigma\; \varepsilon\overset{,}{\iota}\sigma\overset{,}{\iota}\tau\omega\).) (English) Zbl 1436.03043
Tahiri, Hassan (ed.), The philosophers and mathematics. Festschrift for Roshdi Rashed. Cham: Springer. Log. Epistemol. Unity Sci. 43, 117-126 (2018).
Summary: This paper provides a discussion to which extent the Mathematician David Hilbert could or should be considered as a Philosopher, too. In the first part, we discuss some aspects of the relation of Mathematicians and Philosophers. In the second part we give an analysis of David Hilbert as Philosopher.
For the entire collection see [Zbl 1403.00025].
MSC:
03A05 Philosophical and critical aspects of logic and foundations
00A30 Philosophy of mathematics
01A60 History of mathematics in the 20th century
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ackermann, W. (1933). Letter to David Hilbert, August 23rd, 1933, Niedersächsische Staats- und Universitätsbibliothek Göttingen, Cod. Ms. D. Hilbert 1.
[2] Bernays, P. (1935). Hilberts Untersuchungen über die Grundlagen der Arithmetik. In David Hilbert: Gesammelte Abhandlungen (Hilbert 1935) (Vol. III, pp. 196-216). Berlin: Springer.
[3] Bernays, P. (1954). Zur Beurteilung der Situation in der beweistheoretischen Forschung. Revue Internationale de Philosophie, 27-28(1-2), 1-5.
[4] Bernays, P. (1935). Über den Platonismus in der Mathematik. In Abhandlungen zur Philosophie der Mathematik (pp. 62-78). Darmstadt: Wissenschaftliche Buchgesellschaft, 1976 (German translation of a talk given in 1934 and published in French in 1935).
[5] Bourbaki, N. (1994). Elements of the History of Mathematics. Berlin: Springer. · Zbl 0803.01002
[6] Brouwer, L. E. J. (1927). Intuitionistische Betrachtungen über den Formalismus. Koninklijke Akademie van wetenschappen te Amsterdam, Proceedings of the section of sciences, 31, 374-379. Translation in Part in Intuitionistic reflections on formalism (van Heijenoort 1967) pp. 490-492.
[7] Crozet, P. (2018). Avicenna and number theory. In H. Tahiri (Ed.), The Philosophers and Mathematics (pp. 67-80). Berlin: Springer.
[8] Diogenes Laertius (1959). Lives of Eminent Philosophers. Volume I. Cambridge Mass.: Harvard University Press.
[9] Eliae (1900). In Aristotelis Categorias. Commentarium. In A. Busse (Ed.), Commentaria in Aristotelem graeca (Vol. XVIII, Part I, pp. 1-255). Berlin: Georg Reimer.
[10] Ewald, W. (Ed.). (1996). From Kant to Hilbert (Vol. 1). Oxford: Clarendon Press. · Zbl 0859.01002
[11] Gentzen, G. (1938). Die gegenwärtige Lage in der mathematischen Grundlagenforschung. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Neue Folge, 4, 5-18. also in Deutsche Mathematik, 3, 255-268, 1939. English translation in (Gentzen 1969 #7). · Zbl 0019.09701
[12] Gentzen, G. (1969). Collected Works. Amsterdam: North-Holland.
[13] Hilbert, D., & Bernays, P. (1934). Grundlagen der Mathematik I, volume 40 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Berlin: Springer. (2nd ed. 1968). Partly translated into English in the bilingual edition (Hilbert and Bernays 2011).
[14] Hilbert, D., & Bernays, P. (1939). Grundlagen der Mathematik II, volume 50 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Berlin: Springer (2nd ed. 1970). · JFM 65.0021.02
[15] Hilbert, D., & Bernays, P. (2011). Grundlagen der Mathematik I/Foundations of Mathematics I. Washington, DC: College Publications (Bilingual edition of Prefaces and §§1-2 of Hilbert and Paul Bernays 1934). · Zbl 1283.03005
[16] Hilbert, D. (1899). Grundlagen der Geometrie. Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, herausgegeben vom Fest-Comitee (pp. 1-92). Leipzig: Teubner.
[17] Hilbert, D. (1935). Gesammelte Abhandlungen, vol. III: Analysis, Grundlagen der Mathematik, Physik, Verschiedenes, Lebensgeschichte. Berlin: Springer (2nd ed. 1970). · JFM 61.0022.02
[18] Hilbert, D. (1967). The foundations of mathematics. In J. Heijenoort (Ed.), From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 (pp. 464-479) (van Heijenoort 1967). Cambridge, MA: Harvard University Press.
[19] Jourdain, P. E. B. (1915). Mathematicians and philosophers. The Monist, 25(4), 633-638.
[20] Kahle, R. (2013). David Hilbert and the Principia Mathematica. In N. Griffin & B. Linsky (Eds.), The Palgrave Centenary Companion to Principia Mathematica (pp. 21-34). London: Palgrave Macmillan. · Zbl 1298.03009
[21] Kahle, R. (2014). Poincaré in Göttingen. In M. de Paz & R. DiSalle (Eds.), Poincaré, Philosopher of Science, volume 79 of The Western Ontario Series in Philosophy of Science (pp. 83-99). Berlin: Springer. · Zbl 1323.01021
[22] Kahle, R. (2015). Gentzen’s consistency proof in context. In R. Kahle & M. Rathjen (Eds.), Gentzen’s Centenary (pp. 3-24). Berlin: Springer. · Zbl 1378.03003
[23] Korselt, A. (1903). Über die Grundlagen der Geometrie. Jahresbericht der Deutschen Mathematiker-Vereinigung, 12, 402-407. · JFM 34.0525.03
[24] Kreisel, G. (2011). Logical hygiene, foundations, and abstractions: Diversity among aspects and options. In M. Baaz, et al. (Eds.), Kurt Gödel and the Foundations of Mathematics (pp. 27-53). Cambridge, MA: Cambridge University Press. · Zbl 1275.03004
[25] Mazliak, L. (Ed.) (2013). La voyage de Maurice Janet á Göttingen. Les Éditions Materiologiques.
[26] McLarty, C. (2012). Hilbert on theology and its discontents. In A. Doxiadis & B. Mazur (Eds.), Circles Disturbed (pp. 105-129). Princeton: Princeton University Press.
[27] Peckhaus, V. (1990). Hilbertprogramm und Kritische Philosophie, volume 7 of Studien zur Wissenschafts-, Sozial- und Bildungsgeschichte der Mathematik. Vandenhoeck & Ruprecht, Göttingen. · Zbl 0715.01018
[28] Peters, C. A. F. (Ed) (1862). Briefwechsel zwischen C. F. Gauss und H. C. Schumacher, vol. 4. Gustav Esch, Altona.
[29] Philoponus, J. (1897). Ioannis Philoponi in Aristotelis De anima libros commentaria. In M. Heyduck (Ed.), Commentaria in Aristotelem graeca (Vol. XV). Berlin: Georg Reimer.
[30] von Plato, J. (2016). In search of the roots of formal computation. In F. Gadducci, M. Tavosanis (Eds.), History and Philosophy of Computing. HaPoC 2015, volume 487 of IFIP Advances in Information and Communication Technology (pp. 300-320). Berlin: Springer.
[31] Rashed, R. (2008). The philosophy of mathematics. In S. Rahman, T. Street, & H. Tahiri (Eds.), The Unity of Science in the Arabic Tradition, volume 11 of Logic, Epistemology, and the Unity of Scienced (pp. 153-182). Berlin: Springer.
[32] Rashed, R. (2018). Avicenna: Mathematics and philosophy. In H. Tahiri (Ed.), The Philosophers and Mathematics (pp. 67-80). Berlin: Springer.
[33] Reid, C. (1970). Hilbert. Berlin: Springer.
[34] Sinaceur, H. B. (2018). Scientific Philosophy and Philosophical Science. In H. Tahiri (Ed.), The Philosophers and Mathematics (pp. 25-66). Berlin: Springer.
[35] Smoryński, C. (1994). Review of Brouwer’s Intutionism by W. P. van Stigt. The American Mathematical Monthly, 101(8), 799-802.
[36] Tapp, C. (2005). Kardinalität und Kardinäle, volume 53 of Boethius. Stuttgart: Franz Steiner. · Zbl 1081.01001
[37] Tapp, C. (2013). An den Grenzen des Endlichen. Mathematik im Kontext. Berlin: Springer. · Zbl 1267.03005
[38] Toepell, M. (1999). Zur Entstehung und Weiterentwicklung von David Hilberts “Grundlagen der Geometrie”. In David Hilbert: Grundlagen der Geometrie (14th ed., pp. 283-324). Stuttgart: Teubner.
[39] van Dalen, D. (2013). L.E.J. Brouwer. Berlin: Springer.
[40] van Heijenoort, J. (Ed.). (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Cambridge, MA: Harvard University Press. · Zbl 0183.00601
[41] Volk, O.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.