×

Modelling and control of a banana soilborne pest in a multi-seasonal framework. (English) Zbl 1435.92084

Summary: We study the infestation dynamics of banana or plantain plants by Radopholus similis, a plant-parasitic nematode that causes severe damages. Two control strategies are implemented in our model: pesticides, which are widely used, and fallows, which are more environmentally friendly. To represent the host-parasite dynamics, two semi-discrete models are proposed. During each cropping season, free nematodes enter the plant roots, on which they feed and reproduce. At the end of the cropping season, fruits are harvested. In the first model, the parent plant is cut down to be replaced by one of its suckers and pesticides are applied. In the second model, the parent plant is uprooted and a fallow period is introduced, inducing the decay of the free pest populations; at the beginning of the next cropping season, a pest-free vitroplant is planted. For both models, the effective reproduction number of pests is computed, assuming that the infestation dynamics are fast compared to the other processes, which leads to the model order reduction. Conditions on the pesticide load or the fallow duration are then derived to ensure the stability of the periodic pest free solution. Finally, numerical simulations illustrate these theoretical results.

MSC:

92D30 Epidemiology
92D45 Pest management
92C80 Plant biology
34D15 Singular perturbations of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Liu, P., Certification in the Value Chain for Fresh Fruits: The Example of Banana Industry (2009), FAO
[2] Efandem, C.; Kwa, M.; Temple, L.; Davide, O., Production de plantain dans la zone péri urbaine de Yaoundé: Identification des contraintes et incidences sur l’origine et la quantication des flux des marchés de la ville, en agriculture et développement urbain en Afrique de l’Ouest et du Centre, Atelier Yaoundé, Cameroun, CIRAD Yaoundé, Cameroun (2005)
[3] Sarah, J.-L., Variabilité du pouvoir pathogène de Radopholus similis entre populations provenant de différentes zones de production du monde, Infomusa (Ed. Française), 2, 2, 6 (1993)
[4] S. Hockland, R. Inserra, L. Millar, P. Lehman, International plant health-putting legislation into practice, 2006.
[5] Gowen, S., Chemical control of nematodes: efficiency and side-effects, (Maqbool, M. A.; Kerry, B., Plant Nematode Problems and Their Control in the Near East Region (1997), FAO), 59-65
[6] Chabrier, C.; Mauléon, H.; Bertrand, P.; Lassoudière, A.; Quénéhervé, P., Banane antillaise, les systèmes de culture évoluent: en Martinique, méthodes alternatives pour réduire l’utilisation des nématicides et insecticides en bananeraies, Phytoma - La défense des végétaux, 584, 12-16 (2005)
[7] Gebremichael, N., A review on biology and management of Radopholus similis, Adv. Life Sci. Technol., 36 (2015)
[8] Chabrier, C.; Tixier, P.; Duyck, P.-F.; Cabidoche, Y.-M.; Quénéhervé, P., Survival of the burrowing nematode Radopholus similis (Cobb) Thorne without food: Why do males survive so long?, Appl. Soil Ecol., 45, 2, 85-91 (2010)
[9] Loos, C. A., Eradication of the burrowing nematode, Radopholus similis, from bananas, Plant Dis. Rep., 45, 6, 457-461 (1961)
[10] McSorley, R., Adaptations of nematodes to environmental extremes, Florida Entomol., 86, 2, 138-142 (2003)
[11] Chabrier, C.; Quénéhervé, P., Control of the burrowing nematode (Radopholus similis Cobb) on banana: impact of the banana field destruction method on the efficiency of the following fallow, Crop Prot., 22, 1, 121-127 (2003)
[12] Cunniffe, N. J.; Koskella, B.; Metcalf, C. J.E.; Parnell, S.; Gottwald, T. R.; Gilligan, C. A., Thirteen challenges in modelling plant diseases, Epidemics, 10, 6-10 (2015)
[13] S. Nilusmas, M. Mercat, T. Perrot, C. Djian-Caporalino, P. Castagnone-Sereno, S. Touzeau, V. Calcagno, L. Mailleret, A multi-seasonal model of plant-nematode interactions and its use to identify optimal plant resistance deployment strategies, bioRxiv (2019). 10.1101/774869.
[14] Taylor, C. R.; Rodrìguez-Kábana, R., Optimal rotation of peanuts and cotton to manage soil-borne organisms, Agric. Syst., 61, 1, 57-68 (1999)
[15] Van den Berg, W.; Rossing, W., Generalized linear dynamics of a plant-parasitic nematode population and the economic evaluation of crop rotations, J. Nematol., 37, 55-65 (2005)
[16] Gilligan, C. A., Modelling soil-borne plant pathogens: reaction-diffusion models, Can. J. Plant Pathol., 17, 2, 96-108 (1995)
[17] Tixier, P.; Risède, J.-M.; Dorel, M.; Malézieux, E., Modelling population dynamics of banana plant-parasitic nematodes: a contribution to the design of sustainable cropping systems, Ecol. Model., 198, 3, 321-331 (2006)
[18] Tankam Chedjou, I.; Touzeau, S.; Grognard, F.; Mailleret, L.; Tewa, J.-J., A multi-seasonal model of the dynamics of banana plant-parasitic nematodes, (Badouel, E.; Gmati, N.; Watson, B., 14. Colloque Africain sur la Recherche en Informatique et en Mathématiques Appliquées (CARI’2018) (2018))
[19] Mailleret, L.; Lemesle, V., A note on semi-discrete modelling in the life sciences, Philos. Trans. R. Soc. Lond. A, 367, 1908, 4779-4799 (2009) · Zbl 1192.37119
[20] Gubbins, S.; Gilligan, C. A., Biological control in a disturbed environment, Philos. Trans. R. Soc. Lond. Ser. B, 352, 1364, 1935-1949 (1997)
[21] Madden, L. V.; Van Den Bosch, F., A population-dynamics approach to assess the threat of plant pathogens as biological weapons against annual crops: Using a coupled differential-equation model, we show the conditions necessary for long-term persistence of a plant disease after a pathogenic microorganism is introduced into a susceptible annual crop, BioScience, 52, 1, 65-74 (2002)
[22] Mailleret, L.; Castel, M.; Montarry, M.; Hamelin, F., From elaborate to compact seasonal plant epidemic models and back: Is competitive exclusion in the details?, Theor. Ecol., 5, 311-324 (2011)
[23] Hamelin, F. M.; Castel, M.; Poggi, S.; Andrivon, D.; Mailleret, L., Seasonality and the evolutionary divergence of plant parasites, Ecology, 92, 12, 2159-2166 (2011)
[24] Beugnon, M.; Champion, J., Etude sur les racines du bananier, Fruits, 21, 7, 309-327 (1966)
[25] Eckstein, K.; Robinson, J. C., The influence of the mother plant on sucker growth, development and photosynthesis in banana (Musa AAA; Dwarf Cavendish), J. Horticult. Sci.Biotechnol., 74, 3, 347-350 (1999)
[26] Duncan, L. W.; Kaplan, D. T.; Noling, J. W., Maintaining barriers to the spread of Radopholus citrophilus in Florida citrus orchards, Nematropica, 20, 71-87 (1990)
[27] Robinson, J. C.; Saúco, V. G., Bananas and plantains, 19 (2010), Cabi
[28] Moreau, B.; Le Bourdelles, J., Etude du système racinaire du bananier Gros Michel en Equateur, Fruits, 18, 2, 71-74 (1963)
[29] Hugon, R.; Picard, H., Relations spatiales entre taches et nécroses racinaires et nématodes endoparasites chez le bananier, Fruits, 43, 9, 491-498 (1988)
[30] Araya, M.; Centeno, M., Recuperacion de Radopholus similis, Helicotylenchus spp., Meloidogyne spp. y Pratylenchus spp. de raiz funcional, no funcional y combinada de banano (Musa AAA), Corbana, 20, 11-16 (1995)
[31] Kaplan, D. T.; Opperman, C. H., Reproductive strategies and karyotype of the burrowing nematode, Radopholus similis, J. Nematol., 32, 2, 126 (2000)
[32] Marin, D. H.; Sutton, T. B.; Barker, K. R., Dissemination of bananas in Latin America and the Caribbean and its relationship to the occurrence of Radophouls similis, Plant Dis., 82, 9, 964-974 (1998)
[33] Gregory, P., Plant Roots: Growth Activity and Interactions with Soils (2006), Bio-Green Elsevier (Exc)
[34] Holling, C. S., The functional response of invertebrate predators to prey density, Memoirs Entomol. Soc. Can., 98, S48, 5-86 (1966)
[35] J. Noling, Movement and toxicity of nematicides in the plant root zone, ENY-041 (formerly RF-NG002)(1997).
[36] Schaalje, G. B., Dynamic models of pesticide effectiveness, Environ. Entomol., 19, 3, 439-447 (1990)
[37] Tang, S.; Tan, Y.; Juhua, L.; Cheke, A., Threshold conditions for integrated pest management models with pesticides that have residual effect, J. Math. Biol., 66, 1, 1-35 (2011) · Zbl 1402.92369
[38] Sarah, J.-L.; Lassoudière, A.; Guérout, R., La jachère nue et l’immersion du sol: deux méthodes intéressantes de lutte integrée contre Radopholus similis (cobb.) dans les bananeraies des sols tourbeux de Côte d’Ivoire, Fruits, 38, 1, 35-42 (1983)
[39] Fargette, M.; Quénéhervé, P., Populations of nematodes in soils under banana, cv. Poyo, in the Ivory Coast. the nematofauna occurring in the banana producing areas, Rev. Nématol., 51, 2, 239-244 (1988)
[40] Quénéhervé, P., Population of nematodes in soil under banana, cv. Poyo, in the Ivory Coast. 5. Screening of nematicides and horticultural results, Rev. Nématol., 14, 231-249 (1989)
[41] Namaganda, J. M.; Kashaija, I. N.; Maslen, R., Host status of the common weeds of banana establishments to banana nematodes in Uganda, Int. J. Fundam. Appl.Nematol. Res., 4, 2, 271 (2002)
[42] Verhulst, F., Singular perturbation methods for slow-fast dynamics, Nonlinear Dyn., 50, 4, 747-753 (2007) · Zbl 1170.70371
[43] Rosenzweig, M. L.; MacArthur, R. H., Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97, 895, 209-223 (1963)
[44] Thompson, R. N.; Jalava, K.; Obolski, U., Sustained transmission of Ebola in new locations: more likely than previously thought, Lancet Infect. Dis., 19, 10, 1058-1059 (2019)
[45] Van Weerdt, L. G., Studies on the Biology of Radopholus similis (Cobb, 1893) Thorne, 1949. Part III, Embryology and Post-Embryonic Development, Nematologica, 5, 43-52 (1960)
[46] Banana Cultivation Guide, Banana Cultivation Guide, 2018Consulted on March 23.
[47] Serrano, E., Relationship between functional root content and banana yield in costa rica, (Turner, D. W.; Rosales, F. E., Banana Root System: Towards a Better Understanding for Its Productive Management (2005), Bioversity International), 25-34
[48] Chabrier, C.; Carles, C.; Quénéhervé, P.; Cabidoche, Y.-M., Nematode dissemination by water leached in soil: Case study of Radopholus similis (Cobb) Thorne on nitisol under simulated rainfall, Appl. Soil Ecol., 40, 2, 299-308 (2008)
[49] J.-L. Sarah, J. Pinochet, J. Stanton, Radopholus similis Cobb, nématode parasite des bananiers, Fiche technique n1, INIBAP, Montpellier, France, 1996.
[50] zum Felde, A.; Pocasangre, L.; Sikora, R. A., The potential use of microbial communities inside suppressive banana plants for banana root protection, Banana Root System: Towards a Better Understanding for Its Productive Management: Proceedings of an International Symposium/Sistema Radical Del Banano: Hacia Un Mejor Conocimiento Para Su Manejo Productivo: Memorias de Un Simposio Internacional, 169-177 (2005)
[51] Loos, C. A., Studies on the life history and habits of the burrowing nematode, Radopholus similis, the cause of the blackhead disease of banana, Proc. Helminthol. Soc. Wash., 29, 1, 43-56 (1962)
[52] Hewlett, T. E.; Hewlett, E.; Dickson, D. W., Response of Meloidogyne spp., Heterodera glycines, and Radopholus similis to tannic acid, J. Nematol., 29, 4S, 737 (1997)
[53] Marin, D. H.; Barker, K. R.; Sutton, T. B., Efficacy of ABG-9008 against burrowing nematode (Radopholus similis) on bananas, Nematropica, 30, 1, 1-8 (2000)
[54] Fox, J. E.; Gulledge, J.; Engelhaupt, E.; Burow, M. E.; McLachlan, J. A., Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants, Proc. Natl. Acad. Sci., 104, 24, 10282-10287 (2007)
[55] Ma, Z.; Li, J., Dynamical Modeling and Analysis of Epidemics (2009), World Scientific · Zbl 1170.92026
[56] Qian, D.; Li, D., Periodic solutions for ordinary differential equations with sublinear impulsive effects, J. Math. Anal. Appl., 303, 1, 288-303 (2005) · Zbl 1071.34005
[57] Quénéhervé, P., Population of nematodes in soils under banana, cv. Poyo, in the Ivory Coast. 3. seasonal dynamics of populations in mineral soil, Rev. Nématol., 12, 2, 149-160 (1989)
[58] Quénéhervé, P., Population of nematodes in soils under banana, cv. Poyo, in the Ivory Coast. 4. seasonal dynamics of populations in organic soil, Rev. Nématol., 12, 2, 161-170 (1989)
[59] Quénéhervé, P., Nematode management in intensive banana agrosystems: comments and outlook from the Côte d’Ivoire experience, Crop Prot., 12, 3, 164-172 (1993)
[60] Sarah, J.-L., Répartition spatiale des infestations racinaires de Radopholus similis (COBB) en relation avec la croissance et le développement du bananier Poyo en Côte d’ivoire, Fruits, 41, 427-435 (1986)
[61] Basu, S.; Andrews, J., Complexity in mathematical models of public health policies: a guide for consumers of models, PLoS Med., 10, 10, 1-6 (2013)
[62] A. Burr, A. Robinson, Locomotion Behavior, CAB International, pp. 25-62.
[63] Faulkner, L. R.; Bolander, W. J., Acquisition and distribution of nematodes in irrigation waterways of the Columbia Basin in Eastern Washington, J. Nematol., 2, 4, 362-367 (1970)
[64] Ravichandra, N. V.; Krishnappa, K., Effect of various pesticides on the control of the burrowing nematode, Radopholus Similis infecting banana, Indian J. Nematol., 15, 1, 26-29 (1985)
[65] Gilligan, C., Sustainable agriculture and plant diseases: an epidemiological perspective, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 363, 741-759 (2008)
[66] Hall, R. J.; Gubbins, S.; Gilligan, C. A., Evaluating the performance of chemical control in the presence of resistant pathogens, Bull. Math. Biol., 69, 2, 525-537 (2007) · Zbl 1138.92353
[67] Thompson, R. N.; Gilligan, C. A.; Cunniffe, N. J., Control fast or control smart: when should invading pathogens be controlled?, PLoS Comput. Biol., 14, 2, 1-21 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.