×

zbMATH — the first resource for mathematics

Dividend payments in a perturbed compound Poisson model with stochastic investment and debit interest. (English) Zbl 1435.91159
Ukr. Math. J. 71, No. 5, 718-734 (2019) and Ukr. Mat. Zh. 71, No. 5, 631-644 (2019).
Summary: We consider a compound Poisson insurance risk model perturbed by diffusion with stochastic return on investment and debit interest. If the initial surplus is nonnegative, then the insurance company can invest this surplus in a risky asset and risk-free asset based on a fixed proportion. Otherwise, if the surplus is negative, then the insurance company can get the business loan. The integrodifferential equations for the function generating moments of the values of cumulative dividends are obtained for the barrier and threshold dividend strategies, respectively. The expected dividend value is obtained in the closed form in the case where the claim amount is exponentially distributed.
MSC:
91G05 Actuarial mathematics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Asmussen, Ruin Probabilities, World Scientific, Singapore (2000).
[2] Asmussen, Søren; Taksar, Michael, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20, 1, 1-15 (1997) · Zbl 1065.91529
[3] H. Bühlmann, Mathematical Methods in Risk Theory, Springer, Heidelberg (1970).
[4] Cai, J., On the time value of absolute ruin with debit interest, Adv. Appl. Probab., 39, 343-359 (2007) · Zbl 1141.91023
[5] Chiu, Sn; Yin, Cc, The time of ruin, the surplus prior to ruin, and the deficit at ruin for the classical risk process perturbed by diffusion, Insurance Math. Econom., 33, 1, 59-66 (2003) · Zbl 1055.91042
[6] B. de Finetti, “Su un’ impostazione alternativa dell teoria collettiva del rischio,” Trans. XVth Intern. Congr. Actuar., 2, 433-443 (1957).
[7] Dufresne, F.; Gerber, Hu, Risk theory for the compound Poisson process that perturbed by diffusion, Insurance Math. Econom., 10, 51-59 (1991) · Zbl 0723.62065
[8] Gerber, Hans U., An extension of the renewal equation and its application in the collective theory of risk, Scandinavian Actuarial Journal, 1970, 3-4, 205-210 (1970) · Zbl 0229.60062
[9] H. U. Gerber, “Der Einfluss von Zins auf die Ruinwahrscheinlichkeit,” Mitt. Ver. schweiz. Versicherungsmath., 63-70 (1971). · Zbl 0217.26804
[10] Gerber, Hu; Shiu, Sw, On optimal dividend strategies in the compound Poisson model, N. Am. Actuar. J., 10, 76-93 (2006)
[11] Gerber, Hu; Yang, Hl, Absolute ruin probabilities in a jump-diffusion risk model with investment, N. Am. Actuar. J., 11, 3, 159-169 (2008)
[12] M. Jeanblanc-Picqu´e and A. N. Shiryaev, “Optimization of the flow of dividends,” Russ. Math. Surveys, 20, 257-277 (1995). · Zbl 0878.90014
[13] Li, Jz, Asymptotics in a time-dependent renewal risk model with stochastic return, J. Math. Anal. Appl., 387, 1009-1023 (2012) · Zbl 1230.91076
[14] Lu, Yh; Wu, R., The differentiability of dividends function on jump-diffusion risk process with a barrier dividend strategy, Front. Math. China, 9, 5, 1073-1088 (2014) · Zbl 1321.60167
[15] Y. H. Lu, R. Wu, and R. Xu, “The joint distributions of some actuarial diagnostics for the jump-diffusion risk process,” Acta Math. Sci. Ser. B, Eng. Ed., 30, No. 3, 664-676 (2010). · Zbl 1240.91054
[16] Paulsen, J., Risk theory in a stochastic economic environment, Stochast. Proc. Appl., 46, 327-361 (1993) · Zbl 0777.62098
[17] Paulsen, J., Sharp conditions for certain ruin in a risk process with stochastic return on investments, Stochast. Proc. Appl., 75, 135-148 (1998) · Zbl 0932.60044
[18] Paulsen, J., Ruin models with investment income, Probab. Surv., 5, 416-434 (2008) · Zbl 1189.91077
[19] Paulsen, J.; Gjessing, Hk, Optimal choice of dividend barriers for a risk process with stochastic return on investments, Insurance Math. Econ., 20, 215-223 (1997) · Zbl 0894.90048
[20] Wan, N., Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion, Insur. Math. Econ., 40, 509-523 (2007) · Zbl 1183.91077
[21] Yin, Cc; Yuen, Kc, Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs, J. Ind. Manag. Optim., 11, 4, 1247-1262 (2015) · Zbl 1328.93285
[22] Yin, Cc; Wen, Yz, An extension of Paulsen-Gjessing’s risk model with stochastic return on investments, Insurance Math. Econom., 52, 496-476 (2013) · Zbl 1284.91281
[23] Yuen, Kc; Lu, Yh; Wu, R., The compound Poisson process perturbed by a diffusion with a threshold dividend strategy, Appl. Stoch. Models Bus. Ind., 25, 1, 73-93 (2009) · Zbl 1224.91100
[24] Zhu, J.; Yang, Hl, Estimates for the absolute ruin probability in the compound Poisson risk model with credit and debit interest, J. Appl. Probab., 45, 3, 818-830 (2008) · Zbl 1149.60063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.