An age-at-death distribution approach to forecast cohort mortality. (English) Zbl 1435.91140

Summary: Mortality forecasting has received increasing interest during recent decades due to the negative financial effects of continuous longevity improvements on public and private institutions’ liabilities. However, little attention has been paid to forecasting mortality from a cohort perspective. In this article, we introduce a novel methodology to forecast adult cohort mortality from age-at-death distributions. We propose a relational model that associates a time-invariant standard to a series of fully and partially observed distributions. Relation is achieved via a transformation of the age-axis. We show that cohort forecasts can improve our understanding of mortality developments by capturing distinct cohort effects, which might be overlooked by a conventional age-period perspective. Moreover, mortality experiences of partially observed cohorts are routinely completed. We illustrate our methodology on adult female mortality for cohorts born between 1835 and 1970 in two high-longevity countries using data from the Human Mortality Database.


91G05 Actuarial mathematics
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI Link


[1] Andreev, K. F., Evolution of the Danish population from 1835 to 2000, Odense Monographs on Population Aging (2002), Odense University Press: Odense University Press Odense - DK
[2] Barbieri, M.; Wilmoth, J. R.; Shkolnikov, V. M.; Glei, D.; Jasilionis, D.; Jdanov, D.; Boe, C.; Riffe, T.; Grigoriev, P.; Winant, C., Data resource profile: The human mortality database (HMD), Int. J. Epidemiol., 44, 5, 1549-1556 (2015)
[3] Basellini, U.; Camarda, C. G., Modelling and forecasting adult age-at-death distributions, Popul. Stud., 73, 1, 119-138 (2019)
[4] Basellini, U.; Camarda, C. G., A three-component approach to model and forecast age-at-death distributions, (Mazzuco, S.; Keilman, N., Developments in Demographic Forecasting (2020), Springer), (forthcoming)
[5] Bergeron-Boucher, M.-P.; Canudas-Romo, V.; Oeppen, J.; Vaupel, J. W., Coherent forecasts of mortality with compositional data analysis, Demogr. Res., 37, 527-566 (2017)
[6] Bohk-Ewald, C.; Ebeling, M.; Rau, R., Lifespan disparity as an additional indicator for evaluating mortality forecasts, Demography, 54, 4, 1559-1577 (2017)
[7] Bongaarts, J., Long-range trends in adult mortality: Models and projection methods, Demography, 42, 1, 23-49 (2005)
[8] Booth, H., Demographic forecasting: 1980 to 2005 in review, Int. J. Forecast., 22, 3, 547-581 (2006)
[9] Borgan, Ø.; Keilman, N., Do Japanese and Italian women live longer than women in Scandinavia?, Eur. J. Popul., 35, 1, 87-99 (2019)
[10] Brass, W., On the scale of mortality, (Brass, W., Biological Aspect of Demography (1971), Taylor & Francis: Taylor & Francis London), 69-110
[11] Brillinger, D. R., A biometrics invited paper with discussion: The natural variability of vital rates and associated statistics, Biometrics, 42, 4, 693-734 (1986) · Zbl 0611.62136
[12] Brouhns, N.; Denuit, M.; Vermunt, J. K., A poisson log-bilinear regression approach to the construction of projected lifetables, Insurance Math. Econom., 31, 3, 373-393 (2002) · Zbl 1074.62524
[13] Cairns, A. J.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, J. Risk Insurance, 73, 4, 687-718 (2006)
[14] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, N. Am. Actuar. J., 13, 1, 1-35 (2009)
[15] Camarda, C. G., Mortalitysmooth: An package for smoothing Poisson counts with \(P\)-splines, J. Stat. Softw., 50, 1-24 (2012), Available on
[16] Camarda, C.G., Eilers, P.H., Gampe, J., 2008. A warped failure time model for human mortality. In: Proceedings of the 23rd International Workshop of Statistical Modelling, pp. 149-154.
[17] Canudas-Romo, V., Three measures of longevity: Time trends and record values, Demography, 47, 2, 299-312 (2010)
[18] Cheung, S. L.K.; Robine, J.-M., Increase in common longevity and the compression of mortality: The case of Japan, Popul. Stud., 61, 1, 85-97 (2007)
[19] Cheung, S. L.K.; Robine, J.-M.; Paccaud, F.; Marazzi, A., Dissecting the compression of mortality in Switzerland, 1876-2005, Demogr. Res., 21, 569-598 (2009)
[20] Chiou, J.-M.; Müller, H.-G., Modeling hazard rates as functional data for the analysis of cohort lifetables and mortality forecasting, J. Amer. Statist. Assoc., 104, 486, 572-585 (2009)
[21] Christensen, K.; Davidsen, M.; Juel, K.; Mortensen, L.; Rau, R.; Vaupel, J. W., The divergent life-expectancy trends in Denmark and Sweden - and some potential explanations, (Crimmins, E. M.; Preston, S. H.; Cohen, B., International Differences in Mortality at Older Ages: Dimensions and Sources (2010), National Academies Press: National Academies Press Washington (DC))
[22] Stochastic Projection Methodologies: Further Progress and \(P\)-Spline Model Features, Example Results and ImplicationsRevised Working Paper 20 (2007)
[23] Currie, I.D., 2012. Forecasting with the age-period-cohort model?. In: Proceedings of the 27th International Workshop of Statistical Modelling, pp. 149-154.
[24] Currie, I. D., Constraints, the identifiability problem and the forecasting of mortality, Ann. Acturial Sci. (2020), (forthcoming)
[25] Currie, I. D.; Durban, M.; Eilers, P. H., Smoothing and forecasting mortality rates, Stat. Model., 4, 4, 279-298 (2004) · Zbl 1061.62171
[26] Diaz, G.; Debón, A.; Giner-Bosch, V., Mortality forecasting in Colombia from abridged life tables by sex, Genus, 74, 1, 15 (2018)
[27] Dokumentov, A.; Hyndman, R. J.; Tickle, L., Bivariate smoothing of mortality surfaces with cohort and period ridges, Stat, 7, 1, Article e199 pp. (2018)
[28] Efron, B.; Tibshirani, R. J., An Introduction to the Bootstrap (1994), CRC press
[29] Eilers, P. H., Ill-posed problems with counts, the composite link model and penalized likelihood, Stat. Model., 7, 3, 239-254 (2007)
[30] Eilers, P. H.C.; Marx, B. D., Flexible smoothing with \(B\)-splines and penalties (with discussion), Statist. Sci., 11, 2, 89-102 (1996) · Zbl 0955.62562
[31] Fernández, C.; Steel, M. F.J., On Bayesian modeling of fat tails and skewness, J. Amer. Statist. Assoc., 93, 441, 359-371 (1998) · Zbl 0910.62024
[32] Fries, J. F., Aging, natural death, and the compression of morbidity, New Engl. J. Med., 303, 3, 130-135 (1980)
[33] Gigliarano, C.; Basellini, U.; Bonetti, M., Longevity and concentration in survival times: the log-scale-location family of failure time models, Lifetime Data Anal., 23, 2, 254-274 (2017) · Zbl 1383.62332
[34] Gini, C., Variabilità e mutabilità. Contributi allo studio delle relazioni e delle distribuzioni statistiche, Studi Econ.-Giurid. Univ. Cagliari (1912)
[35] Gini, C., Sulla misura della concentrazione e della variabilità dei caratteri, Atti R. Ist. Veneto Sci. Lett. Arti, 73, 1203-1248 (1914)
[36] Goldstein, J. R.; Wachter, K. W., Relationships between period and cohort life expectancy: Gaps and lags, Popul. Stud., 60, 3, 257-269 (2006)
[37] Hanada, K., A formula of Gini’s concentration ratio and its application to life tables, J. Japan Stat. Soc. Japan. Issue, 13, 2, 95-98 (1983) · Zbl 0525.62108
[38] Horiuchi, S.; Ouellette, N.; Cheung, S. L.K.; Robine, J.-M., Modal age at death: lifespan indicator in the era of longevity extension, (Vienna Yearbook of Population Research, Vol. 11 (2013), JSTOR), 37-69
[39] University of California, Berkeley (USA) and Max Planck Institute for Demographic Research (Germany) (2019), Available at www.mortality.org or www.humanmortality.de (data downloaded on 8 May 2019)
[40] Hyndman, R. J.; Booth, H.; Tickle, L.; Maindonald, J., Demography: Forecasting mortality, fertility, migration and population data (2018), R package version 1.21
[41] Jacobsen, R.; Keiding, N.; Lynge, E., Long term mortality trends behind low life expectancy of Danish women, J. Epidemiol. Commun. Health, 56, 3, 205-208 (2002)
[42] Jacobsen, R.; Keiding, N.; Lynge, E., Causes of death behind low life expectancy of Danish women, Scand. J. Public Health, 34, 4, 432-436 (2006)
[43] Janssen, F.; de Beer, J., The timing of the transition from mortality compression to mortality delay in Europe, Japan and the United States, Genus, 75, 1 (2019)
[44] Kannisto, V., Measuring the compression of mortality, Demogr. Res., 3 (2000)
[45] Kannisto, V., Mode and dispersion of the length of life, Popul.: Engl. Sel., 13, 159-171 (2001)
[46] Keilman, N.; Pham, D., Prediction intervals for Lee-Carter-based mortality forecasts, (European Population Conference 2006, Liverpool, June 21-24, 2006 (2006))
[47] Klein, J. P.; Moeschberger, M. L., Survival Analysis: Techniques for Censored and Truncated Data (2003), Springer Science & Business Media · Zbl 1011.62106
[48] Koissi, M.-C.; Shapiro, A. F.; Högnäs, G., Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval, Insurance Math. Econom., 38, 1, 1-20 (2006) · Zbl 1098.62138
[49] Lee, R. D.; Carter, L. R., Modeling and forecasting US mortality, J. Amer. Statist. Assoc., 87, 419, 659-671 (1992) · Zbl 1351.62186
[50] Lindahl-Jacobsen, R.; Oeppen, J.; Rizzi, S.; Möller, S.; Zarulli, V.; Christensen, K.; Vaupel, J. W., Why did Danish women’s life expectancy stagnate? The influence of interwar generations’ smoking behaviour, Eur. J. Epidemiol., 31, 12, 1207-1211 (2016)
[51] McCullagh, P.; Nelder, J., Generalized Linear Models (1989), Chapman and Hall: Chapman and Hall London · Zbl 0744.62098
[52] McKeown, T., The Modern Rise of Population (1976), Edward Arnold: Edward Arnold London
[53] Oeppen, J., Coherent forecasting of multiple-decrement life tables: a test using Japanese cause of death data, (Compositional Data Analysis Conference (2008))
[54] Oeppen, J.; Vaupel, J. W., Broken limits to life expectancy, Science, 296, 5570, 1029-1031 (2002)
[55] Ouellette, N.; Bourbeau, R., Changes in the age-at-death distribution in four low mortality countries: A nonparametric approach, Demogr. Res., 25, 595-628 (2011)
[56] Ouellette, N.; Bourbeau, R.; Camarda, C. G., Regional disparities in Canadian adult and old-age mortality: A comparative study based on smoothed mortality ratio surfaces and age at death distributions, Can. Stud. Popul., 39, 3-4, 79-106 (2012)
[57] Pascariu, M. D.; Lenart, A.; Canudas-Romo, V., The maximum entropy mortality model: forecasting mortality using statistical moments, Scand. Actuar. J., 2019, 8, 661-685 (2019) · Zbl 1422.91370
[58] Pfaff, B., Analysis of Integrated and Cointegrated Time Series with R (2008), Springer Science & Business Media
[59] Pfaff, B., VAR, SVAR and SVEC models: Implementation within R package vars, J. Stat. Softw., 27, 4, 1-32 (2008)
[60] Plat, R., On stochastic mortality modeling, Insurance Math. Econom., 45, 3, 393-404 (2009) · Zbl 1231.91227
[61] Preston, S. H.; Heuveline, P.; Guillot, M., Demography. Measuring and Modeling Population Processes (2001), Blackwell
[62] R: A Language and Environment for Statistical Computing (2018), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria
[63] Raftery, A. E.; Chunn, J. L.; Gerland, P.; Ševčíková, H., Bayesian probabilistic projections of life expectancy for all countries, Demography, 50, 3, 777-801 (2013)
[64] Ramsay, J. O.; Silverman, B. W., Functional Data Analysis (2005), Springer-Verlag · Zbl 1079.62006
[65] Renshaw, A. E.; Haberman, S., A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insurance Math. Econom., 38, 3, 556-570 (2006) · Zbl 1168.91418
[66] Renshaw, A.; Haberman, S., On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling, Insurance Math. Econom., 42, 2, 797-816 (2008) · Zbl 1152.91598
[67] Richards, S. J.; Kirkby, J.; Currie, I. D., The importance of year of birth in two-dimensional mortality data (with discussion), British Actuar. J., 12, 1, 5-61 (2006)
[68] Riley, J. C., Rising Life Expectancy: A Global History (2001), Cambridge University Press
[69] Rizzi, S.; Kjærgaard, S.; Bergeron-Boucher, M.-P.; Lindahl-Jacobsen, R.; Vaupel, J., Forecasting mortality of not extinct cohorts, (21st Nordic Demographic Symposium, Reykjavik (Iceland) (2019))
[70] Shang, H. L.; Booth, H.; Hyndman, R., Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods, Demogr. Res., 25, 173-214 (2011)
[71] Shkolnikov, V. M.; Andreev, E. E.; Begun, A. Z., Gini coefficient as a life table function: computation from discrete data, decomposition of differences and empirical examples, Demogr. Res., 8, 11, 305-358 (2003)
[72] Shkolnikov, V. M.; Jdanov, D. A.; Andreev, E. M.; Vaupel, J. W., Steep increase in best-practice cohort life expectancy, Popul. Dev. Rev., 37, 3, 419-434 (2011)
[73] Smits, J.; Monden, C., Length of life inequality around the globe, Soc. Sci. Med., 68, 6, 1114-1123 (2009)
[74] Thatcher, A. R.; Cheung, S. L.K.; Horiuchi, S.; Robine, J.-M., The compression of deaths above the mode, Demogr. Res., 22, 505-538 (2010)
[75] Thiele, T. N., On a mathematical formula to express the rate of mortality throughout the whole of life, tested by a series of observations made use of by the Danish life insurance company of 1871, J. Inst. Actuar. Assur. Mag., 16, 5, 313-329 (1871)
[76] van Raalte, A. A.; Caswell, H., Perturbation analysis of indices of lifespan variability, Demography, 50, 5, 1615-1640 (2013)
[77] Vaupel, J.; Lundström, H., Longer life expectancy? Evidence from Sweden of reductions in mortality rates at advanced ages, (Studies in the Economics of Aging (1994), University of Chicago Press), 79-102
[78] Villegas, A. M.; Kaishev, V. K.; Millossovich, P., StMoMo: An package for stochastic mortality modeling, J. Stat. Softw., 84, 3 (2018)
[79] Wilmoth, J. R.; Andreev, K.; Jdanov, D.; Glei, D. A.; Riffe, T.; Boe, C.; Bubenheim, M.; Philipov, D.; Shkolnikov, V.; Vachon, P.; Winat, C.; Barbieri, M., Methods protocol for the human mortality database (2019), Last Revised: October 5, 2019 (Version 6)
[80] Wilmoth, J. R.; Lundström, H., Extreme longevity in five countries, Eur. J. Popul./Rev. Eur. Démogr., 12, 1, 63-93 (1996)
[81] Zanotto, L.; Mazzuco, S., Reconstruction of cohort data via EM algorithm, (XXVIII International Population Conference (2017))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.