×

Some significant improvements for interval process model and non-random vibration analysis method. (English) Zbl 1435.74040

Summary: Recently, the authors proposed the interval process model for dynamic uncertainty quantification and based on this further developed a kind of non-probabilistic analysis method called ‘non-random vibration analysis method’ to deal with the important random vibration problems, in which the excitation and response are both given in the form of interval process rather than stochastic process. Since it has some attractive advantages such as easy to understand, convenient to use and small dependence on samples, the non-random vibration analysis method is expected to become an effective supplement to the traditional random vibration theory. In this paper, some significant improvements are made for the interval process model and the non-random vibration analysis method, making them not only more rigorous in theory but also more practical in engineering. Firstly, the definitions and relevant conceptions of interval process model are further standardized and improved, and in addition some new conceptions such as the interval process vector and the cross-covariance function matrix are complemented. Secondly, this paper proposes the important conceptions of limit and continuity of interval process, based on which the differential and integral of interval process are defined. Thirdly, the analytic formulation of dynamic response bounds is deduced for both of the linear single degree of freedom (SDOF) vibration system and the multiple degree of freedom (MDOF) vibration system, providing an important theoretical basis for non-random vibration analysis. Fourthly, this paper also gives the formulation and corresponding numerical methods of structural dynamic response bounds based on finite element method (FEM) for complex continuum problems, effectively enhancing the applicability of non-random vibration analysis in engineering. Finally, four numerical examples are investigated to demonstrate the effectiveness of the proposed method.

MSC:

74H50 Random vibrations in dynamical problems in solid mechanics
65G30 Interval and finite arithmetic
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Crandall, S. H.; Mark, W. D., Random Vibration in Mechanical Systems (2014), Academic Press: Academic Press New York
[2] Lin, Y. K., Probabilistic Theory of Structural Dynamics (1967), McGraw Hill: McGraw Hill New York
[3] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (1991), Springer: Springer New York · Zbl 0722.73080
[4] Jensen, H. A.; Mayorga, F.; Papadimitriou, C., Reliability sensitivity analysis of stochastic finite element models, Comput. Methods Appl. Mech. Engrg., 296, 327-351 (2015) · Zbl 1425.65113
[5] Stefanou, G.; Papadrakakis, M., Stochastic finite element analysis of shells with combined random material and geometric properties, Comput. Methods Appl. Mech. Engrg., 193, 139-160 (2004) · Zbl 1075.74681
[6] Stefanou, G.; Savvas, D.; Papadrakakis, M., Stochastic finite element analysis of composite structures based on mesoscale random fields of material properties, Comput. Methods Appl. Mech. Engrg., 326, 319-337 (2017) · Zbl 1439.74237
[7] Li, K. Y.; Gao, W.; Wu, D.; Song, C. M.; Chen, T. C., Spectral stochastic isogeometric analysis of linear elasticity, Comput. Methods Appl. Mech. Engrg., 332, 157-190 (2018) · Zbl 1439.74441
[8] Ben-Haim, Y.; Elishakoff, I., Convex Models of Uncertainty in Applied Mechanics (1990), Elsevier Science Publisher: Elsevier Science Publisher Amsterdam · Zbl 0703.73100
[9] Elishakoff, I.; Elisseeff, P.; Glegg, S. A.L., Nonprobabilistic, convex-theoretic modeling of scatter in material properties, AIAA J., 32, 4, 843-849 (1994) · Zbl 0804.73079
[10] Ben-Haim, Y., Convex models of uncertainty in radial pulse buckling of shells, ASME J. Appl. Mech., 60, 3, 683-688 (1993) · Zbl 0800.73118
[11] Ben-Haim, Y., A non-probabilistic concept of reliability, Struct. Saf., 14, 4, 227-245 (1994)
[12] Elishakoff, I., An idea on the uncertainty triangle, Shock Vib. Digest, 22, 10, 1 (1995)
[13] Wang, X. J.; Wang, L.; Elishakoff, I.; Qiu, Z. P., Probability and convexity concepts are not antagonistic, Acta Mech., 219, 1-2, 45-64 (2011) · Zbl 1381.74176
[14] Wu, J. L.; Zhang, Y. Q.; Chen, L. P.; Luo, Z., A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Appl. Math. Model., 37, 6, 4578-4591 (2013) · Zbl 1269.93031
[15] Sim, J.; Qiu, Z. P.; Wang, X. J., Modal analysis of structures with uncertain-but-bounded parameters via interval analysis, J. Sound Vib., 303, 1, 29-45 (2007)
[16] Zhu, L. P.; Elishakoff, I.; Starnes, J. H., Derivation of multi-dimensional ellipsoidal convex model for experimental data, Math. Comput. Modelling, 24, 2, 103-114 (1996) · Zbl 0857.73081
[17] Jiang, C.; Han, X.; Lu, G. Y.; Liu, J.; Zhang, Z.; Bai, Y. C., Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique, Comput. Methods Appl. Mech. Engrg., 200, 2528-2546 (2011) · Zbl 1230.74240
[18] Jiang, C.; Zhang, Q. F.; Han, X.; Liu, J.; Hu, D. A., Multidimensional parallelepiped model—a new type of non-probabilistic convex model for structural uncertainty analysis, Internat. J. Numer. Methods Engrg., 103, 1, 31-59 (2015) · Zbl 1352.74036
[19] Ni, B. Y.; Jiang, C.; Han, X., An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis, Appl. Math. Model., 40, 7, 4727-4745 (2016) · Zbl 1459.74008
[20] Kang, Z.; Zhang, W. B., Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data, Comput. Methods Appl. Mech. Engrg., 300, 461-489 (2016) · Zbl 1425.74376
[21] Ni, B. Y.; Jiang, C.; Huang, Z. L., Discussions on non-probabilistic convex modelling for uncertain problems, Appl. Math. Model., 59, 54-85 (2018) · Zbl 1480.74011
[22] Qiu, Z. P.; Zhang, Z. S., Crack propagation in structures with uncertain-but-bounded parameters via interval perturbation method, Theor. Appl. Fract. Mech., 98, 95-103 (2018)
[23] Wu, D.; Gao, W.; Gao, K.; Tin-Loi, F., Robust safety assessment of functionally graded structures with interval uncertainties, Compos. Struct., 180, 664-685 (2017)
[24] Gao, W., Interval finite element analysis using interval factor method, Comput. Mech., 39, 6, 709-717 (2007) · Zbl 1166.74035
[25] Wu, D.; Gao, W., Uncertain static plane stress analysis with interval fields, Internat. J. Numer. Methods Engrg., 110, 13, 1272-1300 (2017)
[26] Muhanna, R. L.; Zhang, H.; Mullen, R. L., Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics, Reliable Comput., 13, 2, 173-194 (2007) · Zbl 1206.74021
[27] Faes, M.; Cerneels, J.; Vandepitte, D.; Moens, D., Identification and quantification of multivariate interval uncertainty in finite element models, Comput. Methods Appl. Mech. Engrg., 315, 896-920 (2017) · Zbl 1439.65162
[28] Ben-Haim, Y., A non-probabilistic measure of reliability of linear systems based on expansion of convex models, Struct. Saf., 17, 2, 91-109 (1995)
[29] Jiang, C.; Bi, R. G.; Lu, G. Y.; Han, X., Structural reliability analysis using non-probabilistic convex model, Comput. Methods Appl. Mech. Engrg., 254, 83-98 (2013) · Zbl 1297.74091
[30] Chen, X. Y.; Fan, J. P.; Bian, X. Y., Theoretical analysis of non-probabilistic reliability based on interval model, Acta Mech. Solida Sin., 30, 6, 638-646 (2017)
[31] Wang, X. J.; Xia, Y.; Zhou, X. Q.; Yang, C., Structural damage measure index based on non-probabilistic reliability model, J. Sound Vib., 333, 5, 1344-1355 (2014)
[32] Hao, P.; Wang, Y. T.; Liu, C.; Wang, B.; Wu, H., A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method, Comput. Methods Appl. Mech. Engrg., 318, 572-593 (2017) · Zbl 1439.74251
[33] Hao, P.; Wang, Y. T.; Liu, X. X.; Wang, B.; Li, G.; Wang, L. P., An efficient adaptive-loop method for non-probabilistic reliability-based design optimization, Comput. Methods Appl. Mech. Engrg., 324, 689-711 (2017) · Zbl 1439.74252
[34] Shi, Q. H.; Wang, X. J.; Wang, R. X.; Chen, X.; Ma, Y. J., An interval updating model for composite structures optimization, Compos. Struct., 209, 177-191 (2019)
[35] Wu, J. L.; Luo, Z.; Zhang, N.; Zhang, Y. Q., A new interval uncertain optimization method for structures using Chebyshev surrogate models, Comput. Struct., 146, 185-196 (2015)
[36] Guo, X.; Bai, W.; Zhang, W. S., Confidence extremal structural response analysis of truss structures under static load uncertainty via SDP relaxation, Comput. Struct., 87, 3, 246-253 (2009)
[37] Gao, W.; Song, C. M.; Tin-Loi, F., Probabilistic interval analysis for structures with uncertainty, Struct. Saf., 32, 3, 191-199 (2010)
[38] Wu, D.; Gao, W., Hybrid uncertain static analysis with random and interval fields, Comput. Methods Appl. Mech. Engrg., 315, 222-246 (2017) · Zbl 1439.74496
[39] Feng, J. W.; Wu, D.; Gao, W.; Li, G. Y., Hybrid uncertain natural frequency analysis for structures with random and interval fields, Comput. Methods Appl. Mech. Engrg., 328, 365-389 (2018) · Zbl 1439.74134
[40] Wu, D.; Gao, W.; Song, C. M.; Tangaramvong, S., Probabilistic interval stability assessment for structures with mixed uncertainty, Struct. Saf., 58, 105-118 (2016)
[41] Yang, X. F.; Liu, Y. S.; Zhang, Y. S.; Yue, Z. F., Probability and convex set hybrid reliability analysis based on active learning Kriging model, Appl. Math. Model., 39, 14, 3954-3971 (2015) · Zbl 1443.90160
[42] Du, X. P., Interval reliability analysis, (ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007 (2007), American Society of Mechanical Engineers: American Society of Mechanical Engineers Las Vegas, Nevada, USA), 1103-1109
[43] Qiu, Z. P.; Wang, X. J., Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach, Int. J. Solids Struct., 40, 20, 5423-5439 (2003) · Zbl 1060.74550
[44] Moore, R. E.; Bierbaum, F., Methods and Applications of Interval Analysis (1979), Prentice-Hall: Prentice-Hall London
[45] Wu, D.; Gao, W.; Li, G.; Tangaramvong, S.; Tin-Loi, F., Robust assessment of collapse resistance of structures under uncertain loads based on Info-Gap model, Comput. Methods Appl. Mech. Engrg., 285, 208-227 (2015) · Zbl 1415.90156
[46] Jiang, C.; Ni, B. Y.; Han, X.; Tao, Y. R., Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems, Comput. Methods Appl. Mech. Engrg., 268, 656-676 (2014) · Zbl 1295.90005
[47] Jiang, C.; Ni, B. Y.; Liu, N. Y.; Han, X.; Liu, J., Interval process model and non-random vibration analysis, J. Sound Vib., 373, 104-131 (2016)
[48] Jiang, C.; Liu, N. Y.; Ni, B. Y.; Han, X., Giving dynamic response bounds under incertain excitations—A non-random vibration analysis method, Chin. J. Theoret. Appl. Mech., 48, 447-463 (2016)
[49] Ross, S. M., Stochastic Processes (1983), John Wiley & Sons: John Wiley & Sons New York · Zbl 0555.60002
[50] Resnick, S. I., Adventures in Stochastic Processes (2013), Springer Science & Business Media: Springer Science & Business Media Boston · Zbl 0762.60002
[51] Cinlar, E., Introduction to Stochastic Processes (1975), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0341.60019
[52] Apostol, T. M., Mathematical Analysis (1974), Addison-Wesley: Addison-Wesley Massachusetts
[53] Robson, J. D., An Introduction to Random Vibration (1964), Edinburgh University Press: Edinburgh University Press Edinburgh · Zbl 0126.19601
[54] Bolotin, V. V., Statistical Methods in Structural Mechanics (1969), Holden-Day: Holden-Day San Francisco · Zbl 0194.57001
[55] Nigam, N. C., Introduction to Random Vibrations (1983), The MIT Press: The MIT Press Cambridge
[56] Newland, D., An introduction to random vibrations, (Spectral and Wavelet Analysis (1993), Longman: Longman New York) · Zbl 0588.70001
[57] Preumont, A., Random Vibration and Spectral Analysis (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0847.70002
[58] Timoshenko, S.; Young, D. H.; Weaver, W., Vibration Problems in Engineering (1974), John Wiley & Sons: John Wiley & Sons New York
[59] Clough, R. W.; Penzien, J., Dynamics of Structures (1975), McGraw-Hill: McGraw-Hill New York · Zbl 0357.73068
[60] Tse, F. S.; Morse, I. E.; Hinkle, R. T., Mechanical Vibrations (1963), Allyn and Bacon: Allyn and Bacon Boston
[61] Mitchell, A. R.; Griffiths, D. F., The Finite Difference Method in Partial Differential Equations (1980), John Wiley & Sons: John Wiley & Sons Chichester · Zbl 0417.65048
[62] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[63] Liu, G. R., Mesh Free Methods: Moving beyond the Finite Element Method (2003), CRC press: CRC press Boca Raton · Zbl 1031.74001
[64] Banerjee, P. K.; Butterfield, R., Boundary Element Methods in Engineering Science (1981), McGraw-Hill: McGraw-Hill London · Zbl 0499.73070
[65] Long, X. Y.; Elishakoff, I.; Jiang, C.; Han, X.; Hashemi, J., Notes on random vibration of a vehicle model and other discrete systems possessing repeated natural frequencies, Arch. Appl. Mech., 84, 8, 1091-1101 (2014)
[66] Yu, Z. S., Automobile Theory (1989), China Machine Press: China Machine Press Beijing
[67] Wang, L. J.; Han, X.; Xie, Y. X., A new iterative regularization method for solving the dynamic load identification problem, Comput. Mater. Contin., 31, 2, 113-126 (2012)
[68] Liu, J.; Sun, X. S.; Han, X.; Jiang, C.; Yu, D. J., Dynamic load identification for stochastic structures based on gegenbauer polynomial approximation and regularization method, Mech. Syst. Signal Process., 56, 35-54 (2015)
[69] Taylor, A. E.; Lay, D. C., Introduction to Functional Analysis, second ed. (1980), John Wiley & Sons, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.