×

Derivation of the Bogoliubov time evolution for a large volume mean-field limit. (English) Zbl 1435.35322

Summary: The derivation of mean-field limits for quantum systems at zero temperature has attracted many researchers in the last decades. Recent developments are the consideration of pair correlations in the effective description, which lead to a much more precise description of both spectral properties and the dynamics of the Bose gas in the weak coupling limit. While mean-field results typically lead to convergence for the reduced density matrix only, one obtains norm convergence when considering the pair correlations proposed by N. N. Bogolubov in his seminal paper [“On the theory of superfluidity”, Acad Sci. USSR, J. Phys. 11, 23–32 (1947)]. In this article, we consider an interacting Bose gas in the case where both the volume and the density of the gas tend to infinity simultaneously. We assume that the coupling constant is such that the self-interaction of the fluctuations is of leading order, which leads to a finite (nonzero) speed of sound in the gas. In our first main result, we show that the difference between the \(N\)-body and the Bogoliubov description is small in \(L^2\) as the density of the gas tends to infinity and the volume does not grow too fast. This describes the dynamics of delocalized excitations of the order of the volume. In our second main result, we consider an interacting Bose gas near the ground state with a macroscopic localized excitation of order of the density. We prove that the microscopic dynamics of the excitation coming from the \(N\)-body Schrödinger equation converges to an effective dynamics which is free evolution with the Bogoliubov dispersion relation. The main technical novelty are estimates for all moments of the number of particles outside the condensate for large volume, and in particular control of the tails of their distribution.

MSC:

35Q40 PDEs in connection with quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
81V70 Many-body theory; quantum Hall effect
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anapolitanos, I.; Hott, M., A simple proof of convergence to the Hartree dynamics in Sobolev trace norms, J. Math. Phys., 57, 12, 122108 (2016) · Zbl 1353.81132
[2] Bach, V., Breteaux, S., Chen, T., Fröhlich, J., Sigal, I.M.: The time dependent Hartree-Fock-Bogoliubov equations for Bosons. (Preprint) (2016). arXiv:1602.05171v2 · Zbl 1511.35297
[3] Benedikter, N.; De Oliveira, G.; Schlein, B., Quantitative derivation of the Gross-Pitaevskii equation, Commun. Pure Appl. Math., 68, 8, 1399-1482 (2015) · Zbl 1320.35318
[4] Benedikter, N.; Porta, M.; Schlein, B., Effective Evolution Equations from Quantum Dynamics (2016), Cambridge: Springer Briefs in Mathematical Physics, Cambridge · Zbl 1396.81003
[5] Boccato, C.; Cenatiempo, S.; Schlein, B., Quantum many-body fluctuations around nonlinear Schrödinger dynamics, Ann. Henri Poincaré, 18, 1, 113-191 (2016) · Zbl 1358.81173
[6] Bogoliubov, Nn, On the theory of superfluidity, J. Phys. (USSR), 11, 1, 23-32 (1947)
[7] Brennecke, C.; Nam, Pt; Napiórkowski, M.; Schlein, B., Fluctuations of N-particle quantum dynamics around the nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, 5, 1201-1235 (2019) · Zbl 1419.81042
[8] Chen, L.; Lee, Jo, Rate of convergence in nonlinear Hartree dynamics with factorized initial data, J. Math. Phys., 52, 5, 052108 (2011) · Zbl 1317.81286
[9] Chen, L.; Lee, Jo; Schlein, B., Rate of convergence towards Hartree dynamics, J. Stat. Phys., 144, 872-903 (2011) · Zbl 1227.82046
[10] Chen, T.; Pavlović, N., Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in \(d = 3\) based on spacetime norms, Ann. Henri Poincaré, 15, 3, 543-588 (2014) · Zbl 1338.35406
[11] Chen, X.; Holmer, J., Correlation structures, many-body scattering processes and the derivation of the Gross-Pitaevskii hierarchy, Int. Math. Res. Not., 2016, 10, 3051-3110 (2016) · Zbl 1404.35407
[12] Deckert, D-A; Fröhlich, J.; Pickl, P.; Pizzo, A., Dynamics of sound waves in an interacting Bose gas, Adv. Math., 293, 275-323 (2016) · Zbl 1334.81140
[13] Dereziński, J.; Napiórkowski, M., Excitation spectrum of interacting Bosons in the mean-field infinite-volume limit, Ann. Henri Poincaré, 15, 12, 2409-2439 (2014) · Zbl 1305.82042
[14] Erdős, L.; Schlein, B.; Yau, H-T, Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate, Commun. Pure Appl. Math., 59, 12, 1659-1741 (2006) · Zbl 1122.82018
[15] Erdős, L.; Schlein, B.; Yau, H-T, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math., 167, 3, 515-614 (2007) · Zbl 1123.35066
[16] Erdős, L.; Schlein, B.; Yau, H-T, Rigorous derivation of the Gross-Pitaevskii equation, Phys. Rev. Lett., 98, 4, 040404 (2007)
[17] Erdős, L.; Schlein, B.; Yau, H-T, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Am. Math. Soc., 22, 4, 1099-1156 (2009) · Zbl 1207.82031
[18] Erdős, L.; Schlein, B.; Yau, H-T, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. Math., 172, 1, 291-370 (2010) · Zbl 1204.82028
[19] Erdős, L.; Yau, H-T, Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., 5, 6, 1169-1205 (2001) · Zbl 1014.81063
[20] Fröhlich, J.; Knowles, A.; Schwarz, S., On the mean-field limit of Bosons with Coulomb two-body interaction, Commun. Math. Phys., 288, 3, 1023-1059 (2009) · Zbl 1177.82016
[21] Ginibre, J.; Velo, G., The classical field limit of scattering theory for nonrelativistic many-boson systems I, Commun. Math. Phys., 66, 1, 37-76 (1979) · Zbl 0443.35067
[22] Ginibre, J.; Velo, G., The classical field limit of scattering theory for nonrelativistic many-boson systems II, Commun. Math. Phys., 68, 1, 45-68 (1979) · Zbl 0443.35068
[23] Giuliani, A.; Seiringer, R., The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys., 135, 5-6, 915-934 (2009) · Zbl 1172.82006
[24] Grech, P.; Seiringer, R., The excitation spectrum for weakly interacting bosons in a trap, Commun. Math. Phys., 322, 2, 559-591 (2013) · Zbl 1273.82007
[25] Griesemer, M.; Schmidt, J., Well-posedness of non-autonomous linear evolution equations in uniformly convex spaces, Math. Nachr., 290, 2-3, 435-441 (2017) · Zbl 1373.47046
[26] Grillakis, M.; Machedon, M.; Margetis, D., Second order corrections to mean field evolution of weakly interacting bosons. I, Commun. Math. Phys., 294, 1, 273-301 (2010) · Zbl 1208.82030
[27] Grillakis, M.; Machedon, M.; Margetis, D., Second order corrections to mean field evolution of weakly interacting bosons. II, Adv. Math., 228, 3, 1788-1815 (2011) · Zbl 1226.82033
[28] Grillakis, M.; Machedon, M., Pair excitations and the mean field approximation of interacting Bosons. I, Commun. Math. Phys., 324, 2, 601-636 (2013) · Zbl 1277.82034
[29] Grillakis, M.; Machedon, M., Pair excitations and the mean field approximation of interacting Bosons. II, Commun. Part. Diff. Eq., 42, 1, 24-67 (2017) · Zbl 1371.35232
[30] Hepp, K., The classical limit for quantum mechanical correlation functions, Commun. Math. Phys., 35, 4, 265-277 (1974)
[31] Jeblick, M.; Leopold, N.; Pickl, P., Derivation of the time dependent Gross-Pitaevskii equation in two dimensions, Commun. Math. Phys., 372, 1, 1-69 (2019) · Zbl 1442.81065
[32] Jeblick, M., Pickl, P.: Derivation of the time dependent Gross-Pitaevskii equation for a class of non purely positive potentials. (Preprint) (2018). arXiv:1801.04799v1 · Zbl 1404.35416
[33] Knowles, A.; Pickl, P., Mean-field dynamics: singular potentials and rate of convergence, Commun. Math. Phys., 298, 1, 101-138 (2010) · Zbl 1213.81180
[34] Lewin, M.; Nam, Pt; Rougerie, N., Derivation of Hartree’s theory for generic mean-field Bose systems, Adv. Math., 254, 570-621 (2014) · Zbl 1316.81095
[35] Lewin, M.; Nam, Pt; Schlein, B., Fluctuations around Hartree states in the mean-field regime, Am. J. Math., 137, 6, 1613-1650 (2015) · Zbl 1329.81430
[36] Lewin, M.; Nam, Pt; Serfaty, S.; Solovej, Jp, Bogoliubov spectrum of interacting Bose gases, Commun. Pure Appl. Math., 68, 3, 413-471 (2015) · Zbl 1318.82030
[37] Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The mathematics of the Bose gas and its condensation. Oberwolfach Seminars, vol. 34. Birkhäuser Basel (2005) · Zbl 1104.82012
[38] Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61(4) (2000) · Zbl 1043.82515
[39] Lieb, Eh; Solovej, Jp, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., 217, 1, 127-163 (2001) · Zbl 1042.82004
[40] Lieb, Eh; Solovej, Jp, Ground state energy of the two-component charged Bose gas, Commun. Math. Phys., 252, 1-3, 485-534 (2004) · Zbl 1124.82303
[41] Lieb, Eh; Yngvason, J., The ground state energy of a dilute two-dimensional Bose gas, J. Stat. Phys., 103, 509-526 (2001) · Zbl 1115.82306
[42] Lührmann, J., Mean-field quantum dynamics with magnetic fields, J. Math. Phys., 53, 022105 (2012) · Zbl 1274.81085
[43] Michelangeli, A.; Schlein, B., Dynamical collapse of Boson stars, Commun. Math. Phys., 311, 3, 645-687 (2012) · Zbl 1242.85007
[44] Mitrouskas, D.; Petrat, S.; Pickl, P., Bogoliubov corrections and trace norm convergence for the Hartree dynamics, Rev. Math. Phys., 31, 8, 1950024 (2019) · Zbl 1435.35321
[45] Nam, Pt; Napiórkowski, M., A note on the validity of Bogoliubov correction to mean-field dynamics, J. Math. Pures Appl., 108, 5, 662-688 (2017) · Zbl 1376.35016
[46] Nam, Pt; Napiórkowski, M., Bogoliubov correction to the mean-field dynamics of interacting bosons, Adv. Theor. Math. Phys., 21, 3, 683-738 (2017) · Zbl 1382.82032
[47] Nam, Pt; Napiórkowski, M.; Michelangeli, A.; Dell’Antonio, G., Norm approximation for many-body quantum dynamics and Bogoliubov theory, Advances in Quantum Mechanics: Contemporary Trends and Open Problems, 18 (2017), New York: Springer, New York
[48] Nam, Pt; Napiórkowski, M., Norm approximation for many-body quantum dynamics: focusing case in low dimensions, Adv. Math., 350, 547-587 (2019) · Zbl 1416.81059
[49] Nam, Pt; Napiórkowski, M.; Solovej, Jp, Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations, J. Funct. Anal., 270, 11, 4340-4368 (2016) · Zbl 1338.81430
[50] Napiórkowski, M.; Cadamuro, D.; Duell, M.; Dybalski, W.; Simonella, S., Recent advances in the theory of Bogoliubov Hamiltonians, Macroscopic Limits of Quantum Systems, 270 (2018), New York: Springer, New York
[51] Pickl, P., Derivation of the time dependent Gross-Pitaevskii equation without positivity condition on the interaction, J. Stat. Phys., 140, 1, 76-89 (2010) · Zbl 1202.82059
[52] Pickl, P., A simple derivation of mean field limits for quantum systems, Lett. Math. Phys., 97, 2, 151-164 (2011) · Zbl 1242.81150
[53] Pickl, P., Derivation of the time dependent Gross-Pitaevskii equation with external fields, Rev. Math. Phys., 27, 1, 1550003 (2015) · Zbl 1320.35328
[54] Rademacher, S.: Central limit theorem for Bose gases interacting through singular potentials. (Preprint) (2019). arXiv:1908.11672v1 · Zbl 1446.35152
[55] Rodnianski, I.; Schlein, B., Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., 291, 1, 31-61 (2009) · Zbl 1186.82051
[56] Seiringer, R., The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., 306, 2, 565-578 (2011) · Zbl 1226.82039
[57] Solovej, Jp, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys., 266, 3, 797-818 (2006) · Zbl 1126.82006
[58] Spohn, H., Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys., 53, 3, 569-615 (1980)
[59] Yau, H-T; Yin, J., The second order upper bound for the ground energy of a bose gas, J. Stat. Phys., 136, 3, 453-503 (2009) · Zbl 1200.82002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.