×

zbMATH — the first resource for mathematics

Generalized conformal derivations of Lie conformal algebras. (English) Zbl 1435.17026
MSC:
17B68 Virasoro and related algebras
17B05 Structure theory for Lie algebras and superalgebras
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
17B65 Infinite-dimensional Lie (super)algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bakalov, B.; Kac, V.; Voronov, A., Cohomology of conformal algebras, Comm. Math. Phys., 200, 561-598, (1999) · Zbl 0959.17018
[2] Benkovič, D., Generalized Lie derivations on triangular algebras, Linear Algebra Appl., 434, 1532-1544, (2011) · Zbl 1216.16032
[3] Chen, L.; Mao, Y.; Lin, N., Generalized derivations of Lie color algebras, Results Math., 63, 923-936, (2013) · Zbl 1272.17022
[4] D’Andrea, A.; Kac, V., Structure theory of finite conformal algebras, Sel. Math., 4, 377-418, (1998) · Zbl 0918.17019
[5] Fan, G.; Su, Y.; Wu, H., Loop Heisenberg-Virasoro Lie conformal algebra, J. Math. Phys., 55, 123508, (2014) · Zbl 1366.17025
[6] Fattori, D.; Kac, V., Classification of finite simple Lie conformal superalgebras, J. Algebra., 258, 23-59, (2002) · Zbl 1050.17023
[7] Hopkins, N., Generalized derivations of nonassociative algebras, Nova J. Math., 5, 215-224, (1996) · Zbl 0883.17005
[8] Kac, V., Vertex algebras for beginners, 10, (1996), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0861.17017
[9] Kac, V., Formal distribution algebras and conformal algebras, The XIIth International Congress in Math. Physics, 80-97, (1999), Cambridge · Zbl 1253.17002
[10] Kaigorodov, I., On \(\delta\)-derivations of classical Lie superalgebras, Siberian Math. J., 50, 3, 434-449, (2009) · Zbl 1221.17019
[11] Leger, G.; Luks, E., Generalized derivations of Lie algebras, J. Algebra, 228, 165-203, (2000) · Zbl 0961.17010
[12] Li, Y.; Wang, Y., Generalized Lie triple derivations, Linear Multilinear Algebra, 59, 237-247, (2011) · Zbl 1237.17014
[13] Liao, P.; Liu, C., On generalized Lie derivations of Lie ideals of prime algebras, Linear Algebra Appl., 430, 1236-1242, (2009) · Zbl 1157.16011
[14] Novotný, P.; Hrivnák, J., On (\(\alpha\), \(\beta\), \(\gamma\))-derivation of Lie algebras and corresponding invariant functions, J. Geom. Phys., 58, 208-217, (2008) · Zbl 1162.17014
[15] Wu, H.; Chen, Q.; Yue, X., Loop Virasoro Lie conformal algebra, J. Math. Phys., 55, 011706, (2014) · Zbl 1286.81148
[16] Zhang, R.; Zhang, Y., Generalized derivations of Lie superalgebras, Comm. Algebra, 38, 3737-3751, (2010) · Zbl 1211.17006
[17] Zheng, K.; Zhang, Y., On (\(\alpha\), \(\beta\), \(\gamma\))-derivations of Lie superalgebras, Int. J. Geom. Methods Mod. Phys., 10, 10, 1350050, (2013) · Zbl 1370.17023
[18] Zusmanovich, P., On \(\delta\)-derivations of Lie algebras and Lie superalgebras, J. Algebra, 324, 12, 3470-3486, (2010) · Zbl 1218.17011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.