On the two-phase fractional Stefan problem. (English) Zbl 1434.80006

Summary: The classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion. We start the paper by reviewing the main properties of the classical problem that are of interest to us. Then we introduce the fractional Stefan problem and develop the basic theory. After that we center our attention on selfsimilar solutions, their properties and consequences. We first discuss the results of the one-phase fractional Stefan problem, which have recently been studied by the authors. Finally, we address the theory of the two-phase fractional Stefan problem, which contains the main original contributions of this paper. Rigorous numerical studies support our results and claims.


80A22 Stefan problems, phase changes, etc.
35D30 Weak solutions to PDEs
35K15 Initial value problems for second-order parabolic equations
35K65 Degenerate parabolic equations
35R09 Integro-partial differential equations
35R11 Fractional partial differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI arXiv


[1] N. Abatangelo, S. Dipierro, M. M. Fall, S. Jarohs and A. Saldaña, Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions, Discrete Contin. Dyn. Syst. 39 (2019), no. 3, 1205-1235. · Zbl 1407.35042
[2] I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems, Adv. Math. 224 (2010), no. 1, 293-315. · Zbl 1190.35125
[3] M. Bonforte, Y. Sire and J. L. Vázquez, Optimal existence and uniqueness theory for the fractional heat equation, Nonlinear Anal. 153 (2017), 142-168. · Zbl 1364.35416
[4] C. Brändle, E. Chasseigne and F. Quirós, Phase transitions with midrange interactions: A nonlocal Stefan model, SIAM J. Math. Anal. 44 (2012), no. 4, 3071-3100. · Zbl 1387.35594
[5] L. A. Caffarelli and L. C. Evans, Continuity of the temperature in the two-phase Stefan problem, Arch. Ration. Mech. Anal. 81 (1983), no. 3, 199-220. · Zbl 0516.35080
[6] J.-F. Cao, Y. Du, F. Li and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal. 277 (2019), no. 8, 2772-2814. · Zbl 1418.35229
[7] E. Chasseigne and S. Sastre-Gómez, A nonlocal two-phase Stefan problem, Differential Integral Equations 26 (2013), no. 11-12, 1335-1360. · Zbl 1313.35352
[8] C. Cortázar, F. Quirós and N. Wolanski, A nonlocal diffusion problem with a sharp free boundary, Interfaces Free Bound. 21 (2019), no. 4, 441-462. · Zbl 1430.35240
[9] A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math. 226 (2011), no. 2, 1378-1409. · Zbl 1208.26016
[10] A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math. 65 (2012), no. 9, 1242-1284. · Zbl 1248.35220
[11] F. del Teso, J. Endal and E. R. Jakobsen, On distributional solutions of local and nonlocal problems of porous medium type, C. R. Math. Acad. Sci. Paris 355 (2017), no. 11, 1154-1160. · Zbl 1382.35243
[12] F. del Teso, J. Endal and E. R. Jakobsen, Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type, Adv. Math. 305 (2017), 78-143. · Zbl 1349.35311
[13] F. del Teso, J. Endal and E. R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments, SIAM J. Numer. Anal. 56 (2018), no. 6, 3611-3647. · Zbl 06995703
[14] F. del Teso, J. Endal and E. R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory, SIAM J. Numer. Anal. 57 (2019), no. 5, 2266-2299. · Zbl 1428.65005
[15] F. del Teso, J. Endal and J. L. Vázquez, The one-phase fractional Stefan problem, preprint (2019), https://arxiv.org/abs/1912.00097.
[16] A. Friedman, Variational Principles and Free-boundary Problems, 2nd ed., Robert E. Krieger, Malabar, 1988. · Zbl 0671.49001
[17] G. Grillo, M. Muratori and F. Punzo, Uniqueness of very weak solutions for a fractional filtration equation, Adv. Math. 365 (2020), 107041. · Zbl 1439.35531
[18] S. C. Gupta, The Classical Stefan Problem, Elsevier, Amsterdam, 2018. · Zbl 1390.80001
[19] S. L. Kamenomostskaja, On Stefan’s problem, Mat. Sb. (N. S.) 53 (95) (1961), 489-514.
[20] G. Lamé and B. P. Clapeyron, Mémoire sur la solidification par refroidissement d’un globe liquide, Ann. Chim. Phys. 47 (1831), 250-256.
[21] A. M. Meirmanov, The Stefan Problem, De Gruyter Exp. Math. 3, Walter de Gruyter, Berlin, 1992.
[22] L. I. Rubenšteĭn, The Stefan Problem, Transl. Math. Monogr. 27, American Mathematical Society, Providence, 1971.
[23] J. Stefan, Über die Theorie der Eisbildung, Monatsh. Math. Phys. 1 (1890), no. 1, 1-6. · JFM 22.1189.02
[24] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Math. Monogr., Oxford University, Oxford, 2007.
[25] J. L. Vázquez, The mathematical theories of diffusion: Nonlinear and fractional diffusion, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Lecture Notes in Math. 2186, Springer, Cham (2017), 205-278. · Zbl 06842163
[26] V. R. Voller, Fractional Stefan problems, Int. J. Heat Mass Transf. 74 (2014), 269-277.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.