×

zbMATH — the first resource for mathematics

The existence and stability of generalized planar central configurations of the trapezoidal type with a non-spherical body at their centre. (English. Russian original) Zbl 1434.70025
J. Appl. Math. Mech. 80, No. 1, 37-43 (2016); translation from Prikl. Mat. Mekh. 80, No. 1, 51-59 (2016).
Summary: The existence of trapezoidal planar central configurations (CCs) without a central body and with a spherical central body (the classic case), and also with a central body in the form of an ellipsoid, either homogeneous or inhomogeneous but consisting of ellipsoidal layers of constant density (generalized cases), is demonstrated. It is shown that such CCs exist in a heliocentric system of coordinates with mutually perpendicular diagonals of the trapezia, at the vertices of which the remaining bodies are positioned. The stability of the generalized trapezoidal planar CCs is investigated. It is established that most versions of such CCs do not possess Lyapunov stability.
MSC:
70E50 Stability problems in rigid body dynamics
70F15 Celestial mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hoppe, R., Erweiterung der bekannten Speciallösung des Dreikörperproblems, Grünert Arch Math Phys, 64, 218-223 (1879) · JFM 11.0650.01
[2] Lehmann-Filhés, R., Über zwei Fälle des Vielkörperproblems, Astron Nach, 127, 3033, 137-144 (1891) · JFM 23.1222.01
[3] Dziobek, O., Über einen merkwürdigen Fall des Vielkörperproblems, Astron Nach, 152, 3627, 33-46 (1900)
[4] Andoyer, H., Sur l’équilibre relatif des n corps, Bull Astron, 23, 50-59 (1906)
[5] Andoyer, H., Sur les solutions periodiques voisines des positions d’équibre relatif, dans le problème des n corps, Bull Astron, 23, 129-146 (1906)
[6] Longley, W. R., Some particular solutions in the problem of n bodies, Bull Am Math Soc, 13, 7, 324-335 (1907), read before the American Mathematical Society, 28 December 1906 · JFM 38.0726.01
[7] MacMillan, W. D.; Bartky, W., Permanent configurations in the problem of four bodies, Trans Am Math Soc, 34, 4, 838-874 (1932) · JFM 58.0826.02
[8] Meyer, G., Solutions voisines des solutions de Lagrange dans le probléme des n corps, Ann l’Observatoire de Bordeaux, 17 (1933), 77-252 · Zbl 0007.37304
[9] Williams, W. L., Permanent configurations in the problem of five bodies, Trans Am Math Soc, 44, 3, 562-579 (1938) · JFM 64.0805.01
[10] Wintner, A., The Analytical Foundations of Celestial Mechanics (1941), Princeton Univ Press: Princeton Univ Press Princeton, NJ · JFM 67.0785.01
[11] Brumberg, V. A., Constant configurations in the problem of four bodies and their stability, Astron Zh, 34, 1, 55-74 (1957)
[12] Elmabsout, B., Sur l’existence des certaines configurations d’équilibre relatif dans le problème des n corps, Comptes Rendus Acad Sci Ser II, 304, 4, 161-164 (1987) · Zbl 0599.70011
[13] Elmabsout, B., Nouvelles configurations d’équilibre relatif dans le problème des n corps I, Comptes Rendus Acad Sci Ser II, 312, 5, 467-472 (1991) · Zbl 0709.70004
[14] Grebenikov, E. A., The existence of accurate symmetrical solutions in a planar Newtonian problem of many bodies, Mat Modelir, 10, 8, 74-80 (1988)
[15] Grebenikov, E. A., Mathematical Problems of Homographic Dynamics, 256 (2010), MAKS Press: MAKS Press Moscow
[16] Simó, C., Relative equilibrium solutions in the four body problem, Celest Mech, 18, 165-178 (1978) · Zbl 0394.70009
[17] Moeckel, R., Linear stability of relative equilibria with a dominant mass, J Dyn Diff Eq, 6, 37-51 (1994) · Zbl 0793.70008
[18] Zhuravlev, S. G.; Dzhunusbekov, DzhS., Homographic solutions in the Newtonian problem of the motion of four bodies in the gravitational field of a triaxial ellipsoid, Theoretical and Applied Problems of Non-linear Analysis, 166-176 (2008), VTs RAN: VTs RAN Moscow
[19] Zhuravlev, S. G.; Perepelkina, YuV., On existence of planar central configurations in the (4n+1)-body problem with two axes of symmetry in a case of the triaxial central body, (Book of Abstracts of 7th Int Symp - Classic Celestial Mechanics, 23-28 October 2011. Book of Abstracts of 7th Int Symp - Classic Celestial Mechanics, 23-28 October 2011, Siedlce, Poland (2011)), 104-105
[20] Zhuravlev, S. G., The existence of planar central configurations in relative non-inertial systems of coordinates, Mezhdunar Zh Teor Prikl Mat Klass Neb Mekh Kosmodin, 1, 49-61 (2012)
[21] Agafonov, S. A.; Perepelkina, YuV., The existence and instability of generalised plane central configurations of the delta-shaped type with non-spherical central bodies, Mezhdunar Zh Teor Prikl Mat Klass Neb Mekh Kosmodin, 1, 2, 44-56 (2013)
[22] Zhuravlev, S. G.; Perepelkina, YuV., The possibility of generalising a planar trapezoidal central configuration for the case of a non-spherical central body, Mezhdunar Zh Teor Prikl Mat Klass Neb Mekh Kosmodin, 1, 62-74 (2012)
[23] Duboshin, G. N., Celestial Mechanics. Basic Problems and Methods (1969), Transal Div, Foreign Tech Div: Transal Div, Foreign Tech Div Wright-Patterson AF base, OH
[24] Duboshin, G. N., The Theory of Attraction, 287 (1961), Fizmatgiz: Fizmatgiz Moscow
[25] Batrakov, YuV., The periodic motions of a particle in the gravitational field of a rotating triaxial ellipsoid, Byull Inst Teor Astron AN SSSR, 6, 8, 524-542 (1960)
[26] Zhuravlev, S. G., A unified approach to investigating the linear stability of classic and generalised planar central configurations of celestial mechanics. Part 1. Analytical calculations, Mezhdunar Zh Teor Prikl Mat Klass Neb Mekh Kosmodin, 1, 2, 5-43 (2013)
[27] Perepelkina, YuV., A unified approach to investigating the linear stability of classic and generalised planar central configurations of celestial mechanics. Part 2. Calculation algorithms, Mezhdunar Zh Teor Prikl Mat Klass Neb Mekh Kosmodin, 2, 3, 5-37 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.