×

A Gaussian mixture model approach to classifying response types. (English) Zbl 1434.62130

Bouguila, Nizar (ed.) et al., Mixture models and applications. Cham: Springer. Unsuperv. Semi-Superv. Learn., 3-22 (2020).
Summary: Visual perception is influenced by prior experiences and learned expectations. One example of this is the ability to rapidly resume visual search after an interruption to the stimuli. The occurrence of this phenomenon within an interrupted search task has been referred to as rapid resumption. Previous attempts to quantify individual differences in the extent to which rapid resumption occurs across participants relied on using an operationally defined cutoff criteria to classify response types within the task. This approach is potentially limited in its accuracy and could be improved by turning to data-driven alternatives for classifying response types. In this chapter, I present an alternative approach to classifying participant responses on the interrupted search task by fitting a Gaussian mixture model to response distributions. The parameter estimates obtained from fitting this model can then be used in a naïve Bayesian classifier to allow for probabilistic classification of individual responses. The theoretical basis and practical application of this approach are covered, detailing the use of the Expectation-Maximisation algorithm to estimate the parameters of the Gaussian mixture model as well as applying a naïve classifier to data and interpreting the results.
For the entire collection see [Zbl 1430.62012].

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62F15 Bayesian inference
62P10 Applications of statistics to biology and medical sciences; meta analysis
62F10 Point estimation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bar, M.: Visual objects in context. Nat. Rev. Neurol. 5(8), 617 (2004) · doi:10.1038/nrn1476
[2] von Helmholtz, H.: Concerning the perceptions in general. In: Treatise on Physiological Optics (1866)
[3] Seriès, P., Seitz, A.: Learning what to expect (in visual perception). Front. Hum. Neurosci. 7, 668 (2013) · doi:10.3389/fnhum.2013.00668
[4] Lleras, A., Rensink, R.A., Enns, J.T.: Rapid resumption of interrupted visual search: New insights on the interaction between vision and memory. Psychol. Sci. 16(9), 684-688 (2005) · doi:10.1111/j.1467-9280.2005.01596.x
[5] Chun, M.M.: Contextual cueing of visual attention. Trends Cogn. Sci. 4(5), 170-178 (2000) · doi:10.1016/S1364-6613(00)01476-5
[6] Kunar, M.A., Flusberg, S.J., Horowitz, T.S., Wolfe, J.M.: Does contextual cueing guide the deployment of attention? J. Exp. Psychol. Hum. Percept. Perform. 33(4), 816-828 (2007) · doi:10.1037/0096-1523.33.4.816
[7] Makovski, T.: What is the context of contextual cueing? Psychon. Bull. Rev. 23(6), 1982-1988 (2016) · doi:10.3758/s13423-016-1058-x
[8] Spaak, E., Fonken, Y., Jensen, O., de Lange, F.P.: The neural mechanisms of prediction in visual search. Cereb. Cortex (New York, NY: 1991) 26(11), 4327-4336 (2016)
[9] Vaskevich, A., Luria, R.: Adding statistical regularity results in a global slowdown in visual search. Cognition 174, 19-27 (2018) · doi:10.1016/j.cognition.2018.01.010
[10] Lleras, A., Porporino, M., Burack, J.A., Enns, J.T.: Enns. Rapid resumption of interrupted search is independent of age-related improvements in visual search. J. Exp. Child Psychol. 109(1), 58-72 (2011) · doi:10.1016/j.jecp.2010.10.011
[11] Lleras, A., Rensink, R.A., Enns, J.T.: Consequences of display changes during interrupted visual search: Rapid resumption is target specific. Percept. Psychophys. 69(6), 980-993 (2007) · doi:10.3758/BF03193936
[12] Posner, M.I.: Orienting of attention. Q. J. Exp. Psychol. 32(1), 3-25 (1980) · doi:10.1080/00335558008248231
[13] Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Berlin (2006) · Zbl 1107.68072
[14] McLachlan, G.J., Lee, S.X., Rathnayake, S.I.: Finite mixture models. Ann. Rev. Stat. Appl. 6(1), 355-378 (2019) · doi:10.1146/annurev-statistics-031017-100325
[15] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39, 1-38 (1977) · Zbl 0364.62022
[16] Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace synergism. Am. Stat. 52(2), 181-184 (1998)
[17] Wechsler, D.: Wechsler Adult Intelligence Scale (WAIS-IV), vol. 22, 4th edn, p. 498. NCS Pearson, San Antonio (2008)
[18] Brainard, D.H.: The psychophysics toolbox. Spat. Vis. 10(4), 433-436 (1997) · doi:10.1163/156856897X00357
[19] Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C.: What’s new in psychtoolbox-3. Perception 36(14), 1 (2007)
[20] MATLAB User’s Guide MathWorks. MathWorks, South Natick (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.