×

Direct plastic structural design under lognormally distributed strength by chance constrained programming. (English) Zbl 1433.90099

Summary: We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.

MSC:

90C15 Stochastic programming
90B25 Reliability, availability, maintenance, inspection in operations research
90C90 Applications of mathematical programming
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Belytschko, T., Plane stress shakedown analysis by finite element, Int J Mech Sci, 14, 9, 619-625 (1972)
[2] Charnes, A.; Cooper, Ww, Chance-constrained programming, Manag Sci, 6, 1, 73-79 (1959) · Zbl 0995.90600
[3] Charnes, A.; Cooper, Ww, Chance-constrained and normal deviates, J Am Statist Assoc, 57, 279, 134-148 (1962) · Zbl 0158.38304
[4] Cobb B, Rumí R, Salmerón A (2012) Approximating the distribution of a sum of log-normal random variables. In: Proceedings of the sixth european workshop on probabilistic graphical models (PGM’2012), Granada, Spain, pp. 67-74. http://leo.ugr.es/pgm2012/proceedings/eproceedings/cobb_approximating.pdf. Accessed 19-21 Sept 2012
[5] Corradi, L.; Zavelani, A., A linear programming approach to shakedown analysis of structures, Comput Methods Appl Mech Eng, 3, 1, 37-53 (1974)
[6] Ellis, Jh; Zimmerman, Jj; Corotis, Rb, Stochastic programs for identifying critical structural collapse mechanisms, Appl Math Modell, 15, 367-373 (1991) · Zbl 0837.90094
[7] Fenton, Lf, The sum of lognormal probability distributions in scatter transmission systems, IRE Trans Commun Syst, 8, 1, 57-67 (1960)
[8] Garcea, G.; Armentano, G.; Petrolo, S.; Casciaro, R., Finite element shakedown analysis of two-dimensional structures, Int J Numer Meth Eng, 63, 1174-1202 (2005) · Zbl 1084.74052
[9] Gaydon, Fa; Mccrum, Aw, A theoretical investigation of the yield point loading of a square plate with a central circular hole, J Mech Phys Solids, 2, 156-169 (1954)
[10] Genna, F., A non-linear inequality, finite element approach to the direct computation of the shakedown load safety factor, Int J Mech Sci, 30, 769-789 (1988) · Zbl 0669.73027
[11] Groß-Weege, J., On the numerical assessment of the safety factor of elastic-plastic structures under variable loading, Int J Mech Sci, 39, 4, 417-433 (1997) · Zbl 0891.73051
[12] Heitzer, M.; Staat, M., Reliability Analysis of Elasto-Plastic Structures under Variable Loads, Inelastic Analysis of Structures under Variable Loads, 269-288 (2000), Dordrecht: Springer Netherlands, Dordrecht
[13] Heitzer, M.; Staat, M.; Marti, K., Limit and shakedown analysis with uncertain data, Lecture notes in economics and mathematical systems (LNEMS), stochastic optimization techniques, numerical methods and technical applications, 253-267 (2002), Heidelberg: Springer, Heidelberg · Zbl 1001.90024
[14] Heitzer M, Staat M (2003) Basis reduction technique for limit and shakedown problems. In: Staat M, Heitzer M (eds) Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach, vol 15. Part I. NIC Series. John von Neumann Institute for Computing, Jülich, pp 1-55. http://hdl.handle.net/2128/2926
[15] Heitzer, M.; Pop, G.; Staat, M., Basis reduction for the shakedown problem for bounded kinematic hardening material, J Global Optim, 17, 1-4, 185-200 (2000) · Zbl 1011.74009
[16] Kataoka, S., Stochastic programming model, Econometrica, 31, 1-2, 181-196 (1963) · Zbl 0125.09601
[17] Kolbin, Vv, Stochastic programming. D. Reidel (1977), Boston: Dordrecht, Boston
[18] Li, Pu; Arellano-Garcia, H.; Wozny, G., Chance constrained programming approach to process optimization under uncertainty, Comput Chem Eng, 32, 1-2, 25-45 (2008)
[19] Liu, Gr; Nguyen, Tt, Smoothed finite element methods (2010), Boca Raton: CRC, Boca Raton
[20] Lyamin, Av; Sloan, Sw, Lower bound limit analysis using non-linear programming., Int J Numer Methods Eng, 55, 573-611 (2002) · Zbl 1076.74571
[21] Madsen, Ho; Krenk, S.; Lind, Nc, Methods of structural safety (2006), Mineola, New York: Dover, Mineola, New York
[22] Makrodimopoulos, A.; Bisbos, C.; Staat, M.; Heitzer, M., Shakedown analysis of plane stress problems via SOCP, Numerical methods for limit and shakedown analysis. Deterministic and probabilistic approach, 185-216 (2003), Jülich: John von Neumann Institute for Computing, Jülich
[23] Mehta, N.; Wu, J.; Molisch, A.; Zhang, J., Approximating a sum of random variables with a lognormal, IEEE Trans Wireless Commun, 6, 7, 2690-2699 (2007)
[24] Pham, Pt; Staat, M., FEM-based shakedown analysis of hardening structures, Asia Pacific J Comput Eng, 1, 1, 1-13 (2014)
[25] Proske, D., Bridge collapse frequencies versus failure probabilities (2018), Cham: Springer, Cham
[26] Rao, Ss, Engineering optimization. Theory and practice (2009), Hoboken: Wiley, Hoboken
[27] Sikorski, K. A.; Borkowski, A., Ultimate Load Analysis by Stochastic Programming, Mathematical Programming Methods in Structural Plasticity, 403-424 (1990), Vienna: Springer Vienna, Vienna · Zbl 0819.73079
[28] Simon, Jw; Weichert, D., Shakedown analysis of engineering structures with limited kinematical hardening, Int J Solids Struct, 49, 2177-2186 (2012)
[29] Staat, M., Limit and shakedown analysis under uncertainty, Int J Comput Methods, 11, 2, 1343008 (2004) · Zbl 1359.74350
[30] Staat M, Heitzer M (eds) (2003a) Probabilistic limit and shakedown problems. In: Numerical methods for limit and shakedown analysis. Deterministic and probabilistic approach. Part VII. NIC series vol. 15. John von Neumann Institute for Computing, Jülich, pp 217-268. http://hdl.handle.net/2128/2926
[31] Staat M, Heitzer M (eds) (2003b) Numerical methods for limit and shakedown analysis. deterministic and probabilistic approach. NIC Series vol. 15. John von Neumann Institute for Computing, Jülich. http://hdl.handle.net/2128/2926
[32] Thoft-Cristensen, P.; Baker, Mj, Structural reliability theory and its applications (1982), Berlin: Springer, Berlin
[33] Tin-Loi, F.; Wei, Z., Elastoplastic analysis of structures under uncertainty: model and solution methods, Numer Funct Anal Optim, 20, 3-4, 353-365 (1999) · Zbl 0936.74049
[34] Tin-Loi, F.; Qi, L.; Wei, Z.; Womersley, Rs, Stochastic ultimate load analysis: models and solution methods, Numer Funct Anal Opt, 17, 9-10, 1029-1043 (1996) · Zbl 0877.90059
[35] Tran, Tn; Staat, M.; Fuschi, P.; Pisano, Aa; Weichert, D., Uncertain multimode failure and shakedown analysis of shells, Direct methods for limit and shakedown analysis of structures, Chap. 14, 279-298 (2015), Cham: Springer, Cham
[36] Trần, Tn; Staat, M.; De Saxcé, G.; Oueslati, A.; Charkaluk, E.; Tritsch, Jb, An edge-based smoothed finite element method for primal-dual shakedown analysis of structures under uncertainties, Limit states of materials and structures: direct methods, 89-102 (2013), Dordrecht: Springer, Dordrecht
[37] Tran, Tn; Kreißig, R.; Staat, M., Probabilistic limit and shakedown analysis of thin plates and shells, Struct Saf, 31, 1, 1-18 (2009)
[38] Tran, Tn; Liu, Gr; Nguyen-Xuan, H.; Nguyen-Thoi, T., An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, Int J Numer Meth Eng, 82, 7, 917-938 (2010) · Zbl 1188.74073
[39] Trần, Tn; Phạm, Pt; Vũ, Đk; Staat, M.; Weichert, D.; Ponter, Ars, Reliability analysis of inelastic shell structures under variable loads, Limit states of materials and structures: direct methods, 135-156 (2009), Netherlands: Springer, Netherlands
[40] Trần, Nt; Trần, Tn; Matthies, Hg; Stavroulakis, Ge; Staat, M., FEM shakedown analysis of uncertain structures by chance constrained programming, PAMM Proc Appl Math Mech, 16, 1, 715-716 (2016)
[41] Trần NT, Trần TN, Matthies HG, Stavroulakis GE, Staat M (2016) FEM shakedown analysis of plate bending under stochastic uncertainty by chance constrained programming. In: Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V(eds) VII European congress on computational methods in applied sciences and engineering, ECCOMAS congress 2016. Crete Island, Greece, 5-10 June 2016, vol 2, pp 3007-3019. 10.7712/100016.2012.11106
[42] Tran, N. T.; Tran, T. N.; Matthies, H. G.; Stavroulakis, G. E.; Staat, M., Shakedown Analysis Under Stochastic Uncertainty by Chance Constrained Programming, Advances in Direct Methods for Materials and Structures, 85-103 (2017), Cham: Springer International Publishing, Cham
[43] Vu DK (2002) Dual limit and shakedown analysis of structures. PhD Thesis. Université de Liège, Belgique
[44] Vu, Dk; Yan, Am; Nguyen, Dh, A primal-dual algorithm for shakedown analysis of structures, Comput Methods Appl Mech Eng, 193, 4663-4674 (2004) · Zbl 1112.74546
[45] Vu, Dk; Staat, M.; Tran, It, Analysis of pressure equipment by application of the primal-dual theory of shakedown, Commun Numer Methods Eng, 23, 3, 213-225 (2007) · Zbl 1107.74007
[46] Zouain, N.; Stein, E.; De Borst, R.; Hughes, Tjr, Shakedown and safety assessment, Encyclopedia of computational mechanics. Part 2: Solids and structures, 1-48 (2017), New York: Wiley, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.