zbMATH — the first resource for mathematics

Time evolution of concentrated vortex rings. (English) Zbl 1433.76029
Summary: We study the time evolution of an incompressible fluid with axisymmetry without swirl when the vorticity is sharply concentrated. In particular, we consider \(N\) disjoint vortex rings of size \(\varepsilon\) and intensity of the order of \(|\log \varepsilon |^{ -1}\). We show that in the limit \(\varepsilon \rightarrow 0\), when the density of vorticity becomes very large, the movement of each vortex ring converges to a simple translation, at least for a small but positive time.

76B47 Vortex flows for incompressible inviscid fluids
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
35Q31 Euler equations
Full Text: DOI
[1] Ambrosetti, A.; Struwe, M., Existence of steady rings in an ideal fluid, Arch. Ration. Mech. Anal., 108, 97-108 (1989) · Zbl 0694.76012
[2] Benedetto, D.; Caglioti, E.; Marchioro, C., On the motion of a vortex ring with a sharply concentrate vorticity, Math. Meth. Appl. Sci., 23, 147-168 (2000) · Zbl 0956.35109
[3] Brunelli, E.; Marchioro, C., Vanishing viscosity limit for a smoke ring with concentrated vorticity, J. Math. Fluid Mech., 13, 421-428 (2011) · Zbl 1270.35337
[4] Buttà, P.; Marchioro, C., Long time evolution of concentrated Euler flows with planar symmetry, SIAM J. Math. Anal., 50, 735-760 (2018) · Zbl 1387.76018
[5] Colagrossi, A.; Graziani, G.; Pulvirenti, M., Particles for fluids: SPH versus vortex methods, Math. Mech. Complex Syst., 2, 45-70 (2014) · Zbl 1315.35144
[6] Cetrone, D.; Serafini, G., Long time evolution of fuids with concentrated vorticity and convergence to the point-vortex model, Rendiconti di Matematica e delle sue applicazioni, 39, 29-78 (2018) · Zbl 1414.76014
[7] Fraenkel, Le, On steady vortex rings of small cross-section in an ideal fluid, Proc. Roy. Soc. Lond. A, 316, 29-62 (1970) · Zbl 0195.55101
[8] Fraenkel, Le; Berger, Ms, A global theory of steady vortex rings in an ideal fluid, Acta Math., 132, 13-51 (1974) · Zbl 0282.76014
[9] Gallay, T., Interaction of vortices in weakly viscous planar flows, Arch. Ration. Mech. Anal., 200, 445-490 (2011) · Zbl 1229.35177
[10] Marchioro, C., On the vanishing viscosity limit for two-dimensional Navier-Stokes equations with singular initial data, Math. Meth. Appl. Sci., 12, 463-470 (1990) · Zbl 0703.76020
[11] Marchioro, C., On the inviscid limit for a fluid with a concentrated vorticity, Commun. Math. Phys., 196, 53-65 (1998) · Zbl 0911.35086
[12] Marchioro, C., Large smoke rings with concentrated vorticity, J. Math. Phys., 40, 869-883 (1999) · Zbl 0969.76014
[13] Marchioro, Carlo, Vanishing viscosity limit for an incompressible fluid with concentrated vorticity, Journal of Mathematical Physics, 48, 6, 065302 (2007) · Zbl 1144.81387
[14] Marchioro, C.; Negrini, P., On a dynamical system related to fluid mechanics, NoDEA Nonlinear Differ. Equ. Appl., 6, 473-499 (1999) · Zbl 0949.37061
[15] Marchioro, C.; Pulvirenti, M.; Francaviglia, M., On the vortex-wave system, Mechanics, Analisis and Geometry, 200 Years After Lagrange, 79-95 (1991), Amsterdam: Elsevier, Amsterdam
[16] Marchioro, C.; Pulvirenti, M., Mathematical Theory of Incompressible Non-viscous Fluids (1994), New York: Springer, New York
[17] Shariff, K.; Leonard, A., Vortex rings, Annu. Rev. Fluid Mech., 24, 235-279 (1972) · Zbl 0743.76024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.