zbMATH — the first resource for mathematics

\(H_\infty\) control of 2-D continuous Markovian jump delayed systems with partially unknown transition probabilities. (English) Zbl 1432.93085
Summary: This study focuses on stochastic stability and \(H_\infty\) control of two-dimensional (2-D) continuous delayed Markovian jump systems (MJSs) with partial information on transition probability. At first, a sufficient condition for the stochastic stability of 2-D MJSs is proposed by choosing an appropriate Lyapunov-Krasovskii functional. Then, the results are developed by designing a state feedback controller that guarantees the stochastic stability of the resultant closed-loop system with a prescribed \(H_\infty\) performance level \(\gamma\). Finally, the proposed results are validated with the help of examples.

93B36 \(H^\infty\)-control
93E15 Stochastic stability in control theory
93C43 Delay control/observation systems
60J76 Jump processes on general state spaces
LMI toolbox
Full Text: DOI
[1] Attasi, S., Systèmes Linéaires Homogènes a Deux Indices (1973), IRIA
[2] Benzaouia, A.; Benhayoun, M.; Tadeo, F., State-feedback stabilization of 2-d continuous systems with delays, Int. J. Innov. Comput. Inf. Control, 7, 2, 977-988 (2011)
[3] Boukas, E. K., Stochastic Switching Systems: Analysis and Design (2007), Birkhauser: Birkhauser Boston
[4] Boyd, S. P.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), SIAM: SIAM Philadelphia
[5] Bracewell, R. N., Two-dimensional Imaging (1995), Prentice Hall: Prentice Hall Upper Saddle River
[6] Chen, B.; Li, H.; Shi, P.; Lin, C.; Zhou, Q., Delay-dependent stability analysis and controller synthesis for Markovian jump systems with state and input delays, Inf. Sci., 179, 16, 2851-2860 (2009)
[7] Costa, O. L.V.; Fragoso, M. D.; Marques, R. P., Discrete-time Markov Jump Linear Systems (2006), Springer: Springer London
[8] Du, C.; Xie, L.; Zhang, C., \(H_∞\) control and robust stabilization of two-dimensional systems in roesser models, Automatica, 37, 2, 205-211 (2001)
[9] Duan, Z.; Xiang, Z.; Karimi, H. R., Delay-dependent exponential stabilization of positive 2-d switched state-delayed systems in the roesser model, Inf. Sci., 272, 173-184 (2014)
[10] Dymkov, M.; Galkowski, K.; Rogers, E.; Dymkou, V.; Dymkou, S., Modeling and control of a sorption process using 2-d systems theory, Proceedings of the 2011 7th International Workshop on Multidimensional Systems, Poitiers, France, 1-5 (2011)
[11] Emelianova, J.; Emelianova, M.; Pakshin, P.; Galkowski, K.; Rogers, E., Addenda to the papers stability of nonlinear 2d systems described by the continuous-time Roesser model and stabilization of differential repetitive processes, Automat. Reote. Control, 77, 1, 130-132 (2016)
[12] Emelianova, J.; Pakshin, P.; Galkowski, K.; Rogers, E., Stability of nonlinear 2-d systems described by the continuous-time Roesser model, Automat. Remote Control, 75, 5, 845-858 (2014)
[13] Fornasini, E.; Marchesini, G., Doubly-indexed dynamical systems: state-space models and structural properties, Math. Syst. Theory, 12, 1, 59-72 (1978)
[14] Gahinet, P.; Nemirovskii, A.; Laub, A. J.; Chilali, M., The LMI control toolbox, Proceedings of IEEE Conference on Decision and Control, 2038-2041 (1994), Lake Buena Vista, FL
[15] Galkowski, K.; Emelianova, M.; Pakshin, P.; Rogers, E., Vector Lyapunov functions for stability and stabilization of differential repetitive processes, J. Comput. Syst. Sci. Int., 55, 4, 503-514 (2016)
[16] Gao, H.; Lam, J.; Xu, S.; Wang, C., Stabilization and \(H_∞\) control of two-dimensional Markovian jump systems, IMA J. Math. Control Inf., 21, 4, 377-392 (2004)
[17] Ghous, I.; Xiang, Z., Robust state feedback \(H_∞\) control for uncertain 2-d continuous state delayed systems in the Roesser model, Multidimens. Syst. Signal Process., 27, 2, 297-319 (2016)
[18] Ghous, I.; Xiang, Z., Reliable \(H}_∞\) control of 2-d continuous nonlinear systems with time varying delays, J. Frankl. Inst., 352, 12, 5758-5778 (2015)
[19] Ghous, I.; Xiang, Z., \(H_∞\) control of a class of 2-d continuous switched delayed systems via state-dependent switching, Int. J. Syst. Sci., 47, 2, 300-313 (2016)
[20] Ghous, I.; Xiang, Z.; Karimi, H. R., State feedback \(H_∞\) control for 2-d switched delay systems with actuator saturation in the second FM model, Circuits Syst. Signal Process., 34, 7, 2167-2192 (2015)
[21] Guo, X. G.; Yang, G. H., Reliable \(H_∞\) filter design for a class of discrete-time nonlinear systems with time-varying delay, Optim. Control Appl. Methods, 31, 4, 303-322 (2010)
[22] Guo, X. G.; Yang, G. H., Delay-dependent reliable \(H_∞\) filtering for sector-bounded nonlinear continuous-time systems with time-varying state delays and sensor failures, Int. J. Syst. Sci., 43, 1, 117-131 (2012)
[23] Hien, L. V.; Tran, T. D.; Trinh, H. M., New \(H_∞\) control design for polytopic systems with mixed time-varying delays in state and input, Int. J. Innov. Comput. Inf. Control, 11, 1, 105-121 (2015)
[24] Huang, J.; Shi, Y., Stochastic stability and robust stabilization of semi-Markov jump linear systems, Int. J. Robust Nonlinear Control, 23, 18, 2028-2043 (2013)
[25] Huang, S.; Xiang, Z., Stability analysis of two-dimensional switched non-linear continuous-time systems, IET Control Theory Appl., 10, 6, 724-729 (2016)
[26] Kaczorek, T., Two-dimensional Linear Systems (1985), Springer: Springer Berlin
[27] Kao, Y.; Xie, J.; Wang, C.; Karimi, H. R., A sliding mode approach to \(H_∞\) non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems, Automatica, 52, 218-226 (2015)
[28] Karimi, H. R., Robust delay-dependent \(H_∞\) control of uncertain time-delay systems with mixed neutral, discrete, and distributed time-delays and Markovian switching parameters, IEEE Trans. Circuits Syst. Regul. Pap., 58, 8, 1910-1923 (2011)
[29] Krasovskii, N.; Lidskii, E., Analytical design of controllers in systems with random attributes, Autom. Remote Control, 22, 1-3, 1021-1025 (1961)
[30] Li, X.; Gao, H., A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis, IEEE Trans. Autom. Control, 56, 9, 2172-2178 (2011)
[31] Li, X.; Gao, H., A heuristic approach to static output-feedback controller synthesis with restricted frequency-domain specifications, IEEE Trans. Autom. Control, 59, 4, 1008-1014 (2014)
[32] Lu, W. S., Two-dimensional Digital Filters (1992), Marcel Dekker: Marcel Dekker New York
[33] Marszalek, W., Two-dimensional state-space discrete models for hyperbolic partial differential equations, Appl. Math Model., 8, 11-14 (1984)
[34] Mittal, A. K.; Dwivedi, A.; Dwivedi, S., Secure communication based on chaotic switching and rapid synchronization using parameter adaptation, Int. J. Innov. Comput. Inf. Control, 11, 2, 569-585 (2015)
[35] Roesser, R. P., A discrete state-space model for linear image processing, IEEE Trans. Autom. Control, 20, 1, 1-10 (1975)
[36] Shen, H.; Li, F.; Wu, Z. G.; Park, J. H., Finite-time tracking control for Markov jump repeated scalar nonlinear systems with partly usable model information, Inform. Sci., 332, 153-166 (2016)
[37] de Souza, C. E.; Trofino, A.; Barbosa, K., Mode-independent filters for Markovian jump linear systems, IEEE Trans. Autom. Control, 51, 11, 1837-1841 (2006)
[38] Su, X.; Shi, P.; Wu, L.; Basin, M. V., Reliable filtering with strict dissipativity for TS fuzzy time-delay systems, IEEE Trans. Cybern., 44, 12, 2470-2483 (2014)
[39] Su, X.; Shi, P.; Wu, L.; Song, Y., Fault detection filtering for nonlinear switched stochastic systems, IEEE Trans. Autom. Control, 61, 5, 1310-1315 (2016)
[40] Su, X.; Wu, L.; Shi, P.; Chen, C. L., Model approximation for fuzzy switched systems with stochastic perturbation, IEEE Trans. Fuzzy Syst., 23, 5, 1458-1473 (2015)
[41] Wei, Y.; Peng, X.; Qiu, J.; Jia, S., \(H_∞\) filtering for two-dimensional continuous-time Markovian jump systems with deficient transition descriptions, Neurocomputing, 167, 406-417 (2015)
[42] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., A new design of \(H_∞\) filtering for continuous-time Markovian jump systems with time-varying delay and partially accessible mode information, Signal Process., 93, 9, 2392-2407 (2013)
[43] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., Filtering design for two-dimensional Markovian jump systems with state-delays and deficient mode information, Inf. Sci., 269, 316-331 (2014)
[44] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., Model approximation for two-dimensional Markovian jump systems with state-delays and imperfect mode information, Multidimens. Syst. Signal Process., 26, 3, 575-597 (2015)
[45] Wu, H. N.; Cai, K. Y., Robust fuzzy control for uncertain discrete-time nonlinear Markovian jump systems without mode observations, Inf. Sci., 177, 6, 1509-1522 (2007)
[46] Wu, L.; Shi, P.; Gao, H.; Wang, C., \(H_∞\) filtering for 2-d Markovian jump systems, Automatica, 44, 7, 1849-1858 (2008)
[47] Wu, Z. G.; Shi, P.; Su, H.; Chu, J., Asynchronous \(l_2 - l_\infty\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica, 50, 1, 180-186 (2014)
[48] Wu, L.; Wang, Z.; Gao, H.; Wang, C., Filtering for uncertain 2-d discrete systems with state delays, Signal Process., 87, 9, 2213-2230 (2007)
[49] Xu, S.; Chen, T.; Lam, J., Robust \(H_∞\) filtering for uncertain Markovian jump systems with mode-dependent time delays, IEEE Trans. Autom. Control, 48, 5, 900-907 (2003)
[50] Xu, S.; Lam, J.; Lin, Z.; Galkowski, K.; Paszke, W.; Sulikowski, B.; Rogers, E.; Owens, D. H., Positive real control of two-dimensional systems: Roesser models and linear repetitive processes, Int. J. Control, 76, 11, 1047-1058 (2003)
[51] Ye, S.; Li, J.; Yao, J., Robust \(H_∞\) control for a class of 2-d discrete delayed systems, ISA Trans., 53, 5, 1456-1462 (2014)
[52] Zhang, Y.; Lou, K.; Ge, Y.; Zhang, C. K., Improved state estimation for Markovian jumping systems with time delay and partial information on transition probabilities, Optim. Control Appl. Methods (2016)
[53] Zuo, Y.; Xiong, L.; Wang, J., New stability of Markovian jump delayed systems with partially unknown transition probabilities, Advances in Electronic Commerce, Web Application and Communication, 49-57 (2012), Springer: Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.