×

Analysis of parametric models for coupled systems. (English) Zbl 1432.93044

Fehr, Jörg (ed.) et al., IUTAM symposium on model order reduction of coupled systems. MORCOS 2018. Proceedings of the IUTAM symposium, Stuttgart, Germany, May 22–25, 2018. Cham: Springer. IUTAM Bookser. 36, 25-39 (2020).
Summary: In many instances one has to deal with parametric models. Such models in vector spaces are connected to a linear map. The reproducing kernel Hilbert space and affine-/linear- representations in terms of tensor products are directly related to this linear operator. This linear map leads to a generalised correlation operator, in fact it provides a factorisation of the correlation operator and of the reproducing kernel. The spectral decomposition of the correlation and kernel, as well as the associated Karhunen-Loève- or proper orthogonal decomposition are a direct consequence. This formulation thus unifies many such constructions under a functional analytic view. Recursively applying factorisations in higher order tensor representations leads to hierarchical tensor decompositions. This format also allows refinements for cases when the parametric model has more structure. Examples are shown for vector- and tensor-fields with certain required properties. Another kind of structure is the parametric model of a coupled system. It is shown that this can also be reflected in the theoretical framework.
For the entire collection see [Zbl 1425.93009].

MSC:

93B11 System structure simplification
93C25 Control/observation systems in abstract spaces
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483-531 (2015). https://doi.org/10.1137/130932715 · Zbl 1339.37089 · doi:10.1137/130932715
[2] Benner, P., Ohlberger, M., Patera, A.T., Rozza, G., Urban, K. (eds.): Model Reduction of Parametrized Systems, MS&A — Modeling, Simulation and Applications, vol. 17. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-58786-8 · Zbl 1381.65001 · doi:10.1007/978-3-319-58786-8
[3] Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer, Berlin (2004). https://doi.org/10.1007/978-1-4419-9096-9 · Zbl 1145.62002 · doi:10.1007/978-1-4419-9096-9
[4] Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-02865-1 · Zbl 1287.65001 · doi:10.1007/978-3-319-02865-1
[5] Chinesta, F., Ladevèze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch Comput. Methods Eng. 18, 395-404 (2011). https://doi.org/10.1007/s11831-011-9064-7 · doi:10.1007/s11831-011-9064-7
[6] Cohen, N., Sharri, O., Shashua, A.: On the expressive power of deep learning: A tensor analysis (2016). arXiv: 1509.05009 [cs.NE]
[7] Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley, Chichester (1989). https://doi.org/10.1002/9783527617234 · Zbl 0729.00007 · doi:10.1002/9783527617234
[8] Dautray, R., Lions, J.L.: Spectral Theory and Applications. Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990). https://doi.org/10.1007/978-3-642-61529-0 · Zbl 0766.47001 · doi:10.1007/978-3-642-61531-3
[9] Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36, 53-78 (2013). https://doi.org/10.1002/gamm.201310004 · Zbl 1279.65045 · doi:10.1002/gamm.201310004
[10] Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-28027-6 · Zbl 1244.65061 · doi:10.1007/978-3-642-28027-6
[11] Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511526169 · Zbl 1143.60005 · doi:10.1017/CBO9780511526169
[12] Khrulkov, V., Novikov, A., Oseledets, I.: Expressive power of recurrent neural net-works (2018). arXiv: 1711.00811 [cs.LG]. · Zbl 1453.65095
[13] Krée, P., Soize, C.: Mathematics of Random Phenomena—Random Vibrations of Mechanical Structures. D. Reidel, Dordrecht (1986). https://doi.org/10.1007/978-94-009-4770-2 · Zbl 0628.73099 · doi:10.1007/978-94-009-4770-2
[14] Lefrançois, E., Boufflet, J.P.: An introduction to fluid-structure interaction: Application to the piston problem. SIAM Rev. 52, 747-767 (2010). https://doi.org/10.1137/0907583 · Zbl 1323.74027 · doi:10&doi=10.1137/0907583
[15] Matthies, H.G.: Analysis of probabilistic and parametric reduced order models (2018). arXiv: 1807.02219 [math.NA].
[16] Matthies, H.G., Litvinenko, A., Pajonk, O., Rosić, B.V., Zander, E.: Parametric and uncertainty computations with tensor product representations. In: Dienstfrey, A. Boisvert, R., (eds.) Uncertainty Quantification in Scientific Computing. IFIP Advances in Information and Communication Technology, vol. 377, pp. 139-150. Springer, Boulder (2012). https://doi.org/10.1007/978-3-642-32677-6 · Zbl 1254.65003 · doi:10.1007/978-3-642-32677-6
[17] Matthies, H.G., Ohayon, R.: Analysis of parametric models linear methods and approximations (2018). arXiv: 1806.01101 [math.NA]. · Zbl 1444.47080
[18] Matthies, H.G., Steindorf, J.: Strong coupling methods. In: Wendland, W., Efendiev, M., (eds.) Analysis and Simulation of Multifield Problems. Lecture Notes in Applied and Computational Mechanics, vol. 12, pp. 13-36. Springer, Berlin (2003) · Zbl 1081.34005 · doi:10.1007/978-3-540-36527-3_2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.