×

Hybrid model of bacterial biofilm growth. (English) Zbl 1432.92057

Summary: Bacterial biofilms play a critical role in environmental processes, water treatment, human health, and food processing. They exhibit highly complex dynamics due to the interactions between the bacteria and the extracellular polymeric substance (EPS), water, and nutrients and minerals that make up the biofilm. We present a hybrid computational model in which the dynamics of discrete bacterial cells are simulated within a multiphase continuum, consisting of EPS and water as separate interacting phases, through which nutrients and minerals diffuse. Bacterial cells in our model consume water and nutrients in order to grow, divide, and produce EPS. Consequently, EPS flows outward from the bacterial colony, while water flows inward. The model predicts bacterial colony formation as a treelike structure. The distribution of bacterial growth and EPS production is found to be sensitive to the pore spacing between bacteria and the consumption of nutrients within the bacterial colony. Forces that are sometimes neglected in biofilm simulations, such as lubrication force between nearby bacterial cells and osmotic (swelling) pressure force resulting from gradients in EPS concentration, are observed to have an important effect on biofilm growth via their influence on bacteria pore spacing and associated water/nutrient percolation into the bacterial colony.

MSC:

92C70 Microbiology
92C75 Biotechnology
92C15 Developmental biology, pattern formation

Software:

iDynoR
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alpkvist, E.; Klapper, I., Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction, Water Sci Technol, 55, 8-9, 265-273 (2007) · doi:10.2166/wst.2007.267
[2] Alpkvist, E.; Klapper, I., A multidimensional multispecies continuum model for heterogeneous biofilm development, Bull Math Biol, 69, 765-789 (2007) · Zbl 1138.92371 · doi:10.1007/s11538-006-9168-7
[3] Alpkvist, E.; Picioreanu, C.; Van Loosdrecht, Mcm; Heyden, A., Three-dimensional biofilm model with individual cells and continuum EPS matrix, Biotechnol Bioeng, 94, 5, 961-979 (2006) · doi:10.1002/bit.20917
[4] Bott, Tr; Pinheiro, M., Biological fouling velocity and temperature effects, Can J Chem Eng, 55, 4, 473-474 (1977) · doi:10.1002/cjce.5450550420
[5] Chopp, Dl; Kirisits, Mj; Moran, B.; Parsek, Mr, A mathematical model of quorum sensing in a growing biofilm, J Ind Microbiol Biotechnol, 29, 6, 339-346 (2002) · doi:10.1038/sj.jim.7000316
[6] Cogan, N.; Keener, Jp, The role of the biofilm matrix in structural development, Math Med Biol, 21, 2, 147-166 (2004) · Zbl 1055.92034 · doi:10.1093/imammb/21.2.147
[7] Colvin, Km; Gordon, Vd; Murakami, K.; Borlee, Br; Wozniak, Dj; Wong, Gcl; Parsek, Mr, The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa, PLoS Pathog, 7, 1, e1001264 (2011) · doi:10.1371/journal.ppat.1001264
[8] Colvin, Km; Irie, Y.; Tart, Cs; Urbano, R.; Whitney, Jc; Ryder, C.; Howell, Pl; Wozniak, Dj; Parsek, Mr, The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix, Environ Microbiol, 14, 8, 1913-1928 (2012) · doi:10.1111/j.1462-2920.2011.02657.x
[9] Costerton, Jw; Cheng, Kj; Geesey, Gg; Ladd, Ti; Nickel, Jc; Dasgupta, M.; Marrie, Tj, Bacterial biofilms in nature and disease, Annu Rev Microbiol, 41, 435-464 (1987) · doi:10.1146/annurev.mi.41.100187.002251
[10] Costerton, Jw; Stewart, Ps; Greenberg, Ep, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318-1322 (1999) · doi:10.1126/science.284.5418.1318
[11] Crowe, Ct; Schwarzkopf, Jd; Sommerfeld, M.; Tsuji, Y., Multiphase flows with droplets and particles (2012), Boca Raton: CRC Press, Boca Raton
[12] Danese, Pn; Pratt, La; Kolter, R., Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture, J Bacteriol, 182, 12, 3593-3596 (2000) · doi:10.1128/JB.182.12.3593-3596.2000
[13] Davis, Rh; Serayssol, J-M; Hinch, Ej, The elastohydrodynamic collision of two spheres, J Fluid Mech, 163, 479-497 (1986) · doi:10.1017/S0022112086002392
[14] De Gennes, Pg, Scaling concepts in polymer physics (1979), Ithaca: Cornell University Press, Ithaca
[15] Duddu, R.; Chopp, Dl; Moran, B., A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment, Biotechnol Bioeng, 103, 1, 92-104 (2008) · doi:10.1002/bit.22233
[16] Flemming, Hc; Flemming, Hc; Murthy, Ps; Venkatesan, R.; Cooksey, K., Why microorganisms live in biofilms and the problem of biofouling, Marine and industrial biofouling, 3-12 (2009), Berlin: Springer, Berlin
[17] Flemming, Hc; Wingender, J., The biofilm matrix, Nat Rev Microbiol, 8, 623-633 (2010) · doi:10.1038/nrmicro2415
[18] Flory, Pj; Krigbaum, Wr, Thermodynamics of high polymer solutions, Annu Rev Phys Chem, 2, 383-402 (1951) · doi:10.1146/annurev.pc.02.100151.002123
[19] Forier, K.; Raemdonck, K.; De Smedt, Sc; Demeester, J.; Coenye, T.; Braeckmans, K., Lipid and polymer nanoparticles for drug delivery to bacterial biofilms, J Controlled Release, 190, 607-623 (2014) · doi:10.1016/j.jconrel.2014.03.055
[20] Frederick, Mr; Kuttler, C.; Hense, Ba; Eberl, Hj, A mathematical model of quorum sensing regulated EPS production in biofilm communities, Theor Biol Med Model, 8, 8 (2011) · doi:10.1186/1742-4682-8-8
[21] Garrett, Tr; Bhakoo, M.; Zhang, Z., Bacterial adhesion and biofilms on surfaces, Prog Nat Sci, 18, 1049-1056 (2008) · doi:10.1016/j.pnsc.2008.04.001
[22] Ghafoor, A.; Hay, Id; Rehm, Bha, Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture, Appl Environ Microbiol, 77, 15, 5238-5246 (2011) · doi:10.1128/AEM.00637-11
[23] Ghosh, P.; Mondal, J.; Ben-Jacob, E.; Levine, H., Mechanically-driven phase separation in a growing bacterial colony, Proc Natl Acad Sci, 112, 17, E2166-E2173 (2015) · doi:10.1073/pnas.1504948112
[24] Giaouris, E.; Heir, E.; Hébraud, M.; Chorianopoulos, N.; Langsrud, S.; Møretrø, T.; Habimana, O.; Desvaux, M.; Renier, S.; Nychas, Gj, Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods, Meat Sci, 97, 298-309 (2014) · doi:10.1016/j.meatsci.2013.05.023
[25] Gorochowski, Te; Matyjaszkiewicz, A.; Todd, T.; Oak, N.; Kowalska, K.; Reid, S.; Tsaneva-Atanasova, Kt; Savery, Nj; Grierson, Cs; Di Bernardo, M., BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology, PLoS ONE, 7, 8, e42790 (2012) · doi:10.1371/journal.pone.0042790
[26] Gutiérrez, M.; Gregorio-Godoy, P.; Del Pulgar, Gp; Muñoz, Le; Sáez, S.; Rodríguez-Patón, A., A new improved and extended version of the multicell bacterial simulator gro, ACS Synth Biol, 6, 1496-1508 (2017) · doi:10.1021/acssynbio.7b00003
[27] Hackbusch, W., Multi-grid methods and applications (1985), New York: Springer Press, New York · Zbl 0585.65030
[28] Hellweger, Fl; Bucci, V., A bunch of tiny individuals—individual-based modeling for microbes, Ecol Model, 220, 8-22 (2009) · doi:10.1016/j.ecolmodel.2008.09.004
[29] Hellweger, Fl; Clegg, Rj; Clark, Jr; Plugge, Cm; Kreft, Ju, Advancing microbial sciences by individual-based modeling, Nat Rev Microbiol, 14, 461-471 (2016) · doi:10.1038/nrmicro.2016.62
[30] Hentzer, M.; Teitzel, Gm; Balzer, Gj; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, Mr, Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function, J Bacteriol, 183, 18, 5395-5401 (2001) · doi:10.1128/JB.183.18.5395-5401.2001
[31] Hertz, H., Über die Berührung fester elastischer Körper, J reine und angewandte Mathematik, 92, 156-171 (1882) · JFM 14.0807.01
[32] Hibbing, Me; Fuqua, C.; Parsek, Mr; Peterson, Sb, Bacterial competition: surviving and thriving in the microbial jungle, Nat Rev Microbiol, 8, 15-25 (2010) · doi:10.1038/nrmicro2259
[33] Hori, K.; Matsumoto, S., Bacterial adhesion: from mechanism to control, Biochem Eng J, 48, 424-434 (2010) · doi:10.1016/j.bej.2009.11.014
[34] Horn, H.; Lackner, S., Modeling of biofilm systems: a review, Adv Biochem Eng Biotechnol, 146, 53-76 (2014)
[35] Huggins, Ml, Solutions of long chain compounds, J Chem Phys, 9, 440 (1941) · doi:10.1063/1.1750930
[36] Jennings, Lk; Storek, Km; Ledvina, He; Coulon, C.; Marmont, Ls; Sadovskaya, I.; Secor, Pr; Tseng, Bs; Scian, M.; Filloux, A.; Wozniak, Dj; Howell, Pl; Parsek, Mr, Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix, Proc Natl Acad Sci, 112, 36, 11353-11358 (2015) · doi:10.1073/pnas.1503058112
[37] Joseph, Gg; Zenit, R.; Hunt, Ml; Rosenwinkel, Am, Particle-wall collisions in a viscous fluid, J Fluid Mech, 433, 329-346 (2001) · Zbl 0968.76505 · doi:10.1017/S0022112001003470
[38] Kapur, V.; Charkoudian, Jc; Kessler, Sb; Anderson, Jl, Hydrodynamic permeability of hydrogels stabilized within porous membranes, Ind Eng Chem Res, 35, 3179-3185 (1996) · doi:10.1021/ie960015z
[39] Katsikogianni, M.; Missirlis, Yf, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions, Eur Cells Mater, 8, 37-57 (2004) · doi:10.22203/eCM.v008a05
[40] Klapper, I.; Dockery, J., Role of cohesion in the material description of biofilms, Phys Rev E, 74, 031902 (2006) · doi:10.1103/PhysRevE.74.031902
[41] Klapper, I.; Dockery, J., Mathematical description of microbial biofilms, SIAM Review, 52, 2, 221-265 (2010) · Zbl 1191.92065 · doi:10.1137/080739720
[42] Kragh, Kn; Hutchison, Jb; Melaugh, G.; Rodesney, C.; Roberts, Ael; Irie, Y.; Jensen, Pø; Diggle, Sp; Allen, Rj; Gordon, V.; Bjarnsholt, T., Role of multicellular aggregates in biofilm formation, mBio, 7, 2, e00216-e00237 (2016) · doi:10.1128/mBio.00237-16
[43] Kreft, J-U; Wimpenny, Jwt, Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth, Water Sci Technol, 43, 6, 135-141 (2001) · doi:10.2166/wst.2001.0358
[44] Kreft, Ju; Picioreanu, C.; Wimpenny, Jwt; Van Loosdrecht, Mcm, Individual-based modelling of biofilms, Microbiology, 147, 11, 2897-2912 (2001) · doi:10.1099/00221287-147-11-2897
[45] Lardon, La; Merkey, Bv; Martins, S.; Dotsch, A.; Picioreanu, C.; Kreft, J-U; Smets, Bf, iDynoMiCS: next-generation individual-based modelling of biofilms, Environ Microbiol, 13, 9, 2416-2434 (2011) · doi:10.1111/j.1462-2920.2011.02414.x
[46] Lau, Pc; Dutcher, Jr; Beveridge, Tj; Lam, Js, Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy, Biophys J, 96, 7, 2935-2948 (2009) · doi:10.1016/j.bpj.2008.12.3943
[47] Lau, Pc; Lindhout, T.; Beveridge, Tj; Dutcher, Jr; Lam, Js, Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms, J Bacteriol, 191, 21, 6618-6631 (2009) · doi:10.1128/JB.00698-09
[48] Lear, G., Biofilms in bioremediation: current research and emerging technologies (2016), Poole: Caister Academic Press, Poole
[49] Lewandowski, Z.; Boltz, J.; Wilderer, P., Biofilms in water and wastewater treatment, Treatise on water science, 529-570 (2011), London: Elsevier, London
[50] Marshall, Js, Discrete-element modeling of particulate aerosol flows, J Comput Phys, 228, 1541-1561 (2009) · Zbl 1410.76331 · doi:10.1016/j.jcp.2008.10.035
[51] Marshall, Js, Viscous damping force during head-on collision of two spherical particles, Phys Fluids, 23, 1, 013305 (2011) · doi:10.1063/1.3546094
[52] Marshall, Js; Li, S., Adhesive particle flow: a discrete element approach (2014), New York: Cambridge University Press, New York
[53] Marshall, Js; Sala, K., Comparison of methods for computing the concentration field of a particulate flow, Int J Multiph Flow, 56, 4-14 (2013) · doi:10.1016/j.ijmultiphaseflow.2013.05.009
[54] Mattei, Mr; Frunzo, L.; D’Acunto, B.; Pechaud, Y.; Pirozzi, F.; Esposito, G., Continuum and discrete approach in modeling biofilm development and structure: a review, J Math Biol, 76, 4, 945-1003 (2018) · Zbl 1391.35378 · doi:10.1007/s00285-017-1165-y
[55] Mazza, Mg, The physics of biofilms—an introduction, J Phys D Appl Phys, 49, 203001 (2016) · doi:10.1088/0022-3727/49/20/203001
[56] Melaugh, G.; Hutchison, J.; Kragh, Kn; Irie, Y.; Roberts, A.; Bjarnsholt, T.; Diggle, Sp; Gordon, Vd; Allen, Rj, Shaping the growth behaviour of biofilms initiated from bacterial aggregates, PLoS ONE, 11, 3, e0149683 (2016) · doi:10.1371/journal.pone.0149683
[57] Monaghan, Jj, Extrapolating B splines for interpolation, J Comput Phys, 60, 2, 253-262 (1985) · Zbl 0588.41005 · doi:10.1016/0021-9991(85)90006-3
[58] Monod, J., The growth of bacterial cultures, Annu Rev Microbiol, 3, 371-394 (1949) · doi:10.1146/annurev.mi.03.100149.002103
[59] Nadell, Cd; Xavier, Jb; Foster, Kr, The sociobiology of biofilms, FEMS Microbiol Rev, 33, 206-224 (2009) · doi:10.1111/j.1574-6976.2008.00150.x
[60] Napov, A.; Notay, Y., Smoothing factor, order of prolongation and actual multigrid convergence, Numer Math, 118, 457-483 (2011) · Zbl 1227.65122 · doi:10.1007/s00211-011-0362-7
[61] Paramonova, E.; Kalmykowa, Oj; Van Der Mei, Hc; Busscher, Hj; Sharma, Pk, Impact of hydrodynamics on oral biofilm strength, J Dent Res, 88, 10, 922-926 (2009) · doi:10.1177/0022034509344569
[62] Paramonova, E.; Krom, Bp; Van Der Mei, Hc; Busscher, Hj; Sharma, Pk, Hyphal content determines the compression strength of Candida albicans biofilms, Microbiology, 155, 1997-2003 (2009) · doi:10.1099/mic.0.021568-0
[63] Pavasant, P.; Dos Santos, Lm; Pistikopoulos, En; Livingston, Ag, Prediction of optimal thickness for membrane-attached biofilms growing in an extractive membrane bioreactor, Biotechnol Bioeng, 52, 3, 373-386 (1996) · doi:10.1002/(SICI)1097-0290(19961105)52:3<373::AID-BIT3>3.0.CO;2-H
[64] Peulen, To; Wilkinson, Kj, Diffusion of nanoparticles in a biofilm, Environ Sci Technol, 45, 3367-3373 (2011) · doi:10.1021/es103450g
[65] Picioreanu, C.; Van Loosdrecht, Mcm; Heijnen, Jj, A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads, Biotechnol Bioeng, 57, 6, 718-731 (1998) · doi:10.1002/(SICI)1097-0290(19980320)57:6<718::AID-BIT9>3.0.CO;2-O
[66] Picioreanu, C.; Van Loosdrecht, Mcm; Heijnen, Jj, Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach, Biotechnol Bioeng, 58, 1, 101-116 (1998) · doi:10.1002/(SICI)1097-0290(19980405)58:1<101::AID-BIT11>3.0.CO;2-M
[67] Picioreanu, C.; Van Loosdrecht, Mcm; Heijnen, Jj, Discrete-differential modelling of biofilm structure, Water Sci Technol, 39, 115-122 (1999) · doi:10.2166/wst.1999.0341
[68] Picioreanu, C.; Van Loosdrecht, Mcm; Heijnen, Jj, A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms, Biotechnol Bioeng, 68, 355-369 (2000) · doi:10.1002/(SICI)1097-0290(20000520)68:4<355::AID-BIT1>3.0.CO;2-A
[69] Picioreanu, C.; Van Loosdrecht, Mcm; Heijnen, Jj, Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study, Biotechnol Bioeng, 69, 5, 504-515 (2000) · doi:10.1002/1097-0290(20000905)69:5<504::AID-BIT5>3.0.CO;2-S
[70] Roose, T.; Fowler, Ac, Network development in biological gels: role in lymphatic vessel development, Bull Math Biol, 70, 6, 1772-1789 (2008) · Zbl 1166.92005 · doi:10.1007/s11538-008-9324-3
[71] Rudge, Tj; Steiner, Pj; Phillips, A.; Haseloff, J., Computational modeling of synthetic microbial biofilms, ACS Synth Biol, 1, 345-352 (2012) · doi:10.1021/sb300031n
[72] Schluter, J.; Nadell, Cd; Bassler, Bl; Foster, Kr, Adhesion as a weapon in microbial competition, ISME J, 9, 139-149 (2015) · doi:10.1038/ismej.2014.174
[73] Seminara, A.; Angelini, Te; Wilking, Jn; Vlamakis, H.; Ebrahim, S.; Kolter, R.; Weitz, Da; Brenner, Mp, Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix, Proc Natl Acad Sci, 109, 4, 1116-1121 (2012) · doi:10.1073/pnas.1109261108
[74] Shaw, T.; Winston, M.; Rupp, Cj; Klapper, I.; Stoodley, P., Commonality of elastic relaxation times in biofilms, Phys Rev Lett, 93, 9, 098102 (2004) · doi:10.1103/PhysRevLett.93.098102
[75] Srey, S.; Jahid, Ik; Ha, Sd, Biofilm formation in food industries: a food safety concern, Food Control, 31, 572-585 (2013) · doi:10.1016/j.foodcont.2012.12.001
[76] Srivastava, S.; Bhargava, A., Biofilms and human health, Biotech Lett, 38, 1-22 (2016) · doi:10.1007/s10529-015-1960-8
[77] Stewart, Ps, Diffusion in biofilm, J Bacteriol, 185, 5, 1485-1491 (2003) · doi:10.1128/JB.185.5.1485-1491.2003
[78] Stewart, Ps; Franklin, Mj, Physiological heterogeneity in biofilms, Nat Rev Microbiol, 6, 199-210 (2008) · doi:10.1038/nrmicro1838
[79] Sutherland, Iw, The biofilm matrix—an immobilized but dynamic microbial environment, Trends Microbiol, 9, 5, 222-227 (2001) · doi:10.1016/S0966-842X(01)02012-1
[80] Tokita, M.; Dusek, K., Friction coefficient of polymer networks of gels and solvent, Advances in polymer science 110. Responsive gels: volume transitions II, 27-47 (1993), Berlin: Springer, Berlin
[81] Tokita, M.; Tanaka, T., Friction coefficient of polymer networks of gels, J Chem Phys, 95, 4613-4619 (1991) · doi:10.1063/1.461729
[82] Valladares Linares, R.; Sz, Bs; Li, Z.; Abughdeeb, M.; Amy, G.; Vrouwenvelder, Js, Impact of spacer thickness on biofouling in forward osmosis, Water Res, 57, 223-233 (2014) · doi:10.1016/j.watres.2014.03.046
[83] Van Lent, J., Multigrid methods for time-dependent partial differential equations (2006), Belgium: Katholieke Universiteit Leuven, Belgium
[84] Vanka, Sp, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, J Comput Phys, 65, 138-158 (1986) · Zbl 0606.76035 · doi:10.1016/0021-9991(86)90008-2
[85] Wanner, O.; Gujer, W., A multispecies biofilm model, Biotechnol Bioeng, 28, 3, 314-328 (1986) · doi:10.1002/bit.260280304
[86] Warren, Mr; Sun, H.; Yan, Y.; Cremer, J.; Li, B.; Hwa, T., Spatiotemporal establishment of dense bacterial colonies growing on hard agar, eLife, 8, e41093 (2019) · doi:10.7554/eLife.41093
[87] Wen, Cy; Yu, Yh, Mechanics of fluidization, Chem Eng Prog Symp Ser, 62, 62, 100-111 (1966)
[88] Wilking, Jn; Angelini, Te; Seminara, A.; Brenner, Mp; Weitz, Da, Biofilms as complex fluids, MRS Bull, 36, 385-391 (2011) · doi:10.1557/mrs.2011.71
[89] Winstanley, Hf; Chapwanya, M.; Mcguinness, Mj; Fowler, Ac, A polymer-solvent model of biofilm growth, Proc R Soc A, 467, 2129, 1449-1467 (2011) · Zbl 1219.35338 · doi:10.1098/rspa.2010.0327
[90] Wolgemuth, Cw; Mogilner, A.; Oster, G., The hydration dynamics of polyelectrolyte gels with applications to cell motility and drug delivery, Eur Biophys J, 33, 2, 146-158 (2004) · doi:10.1007/s00249-003-0344-5
[91] Yang, F-L; Hunt, Ml, Dynamics of particle-particle collisions in a viscous liquid, Phys Fluids, 18, 121506 (2006) · Zbl 1146.76569 · doi:10.1063/1.2396925
[92] Zhang, Z.; Nadezhina, E.; Wilkinson, Kj, Quantifying diffusion in a biofilm of Streptococcus mutans, Antimicrob Agents Chemother, 55, 3, 1075-1081 (2011) · doi:10.1128/AAC.01329-10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.