×

zbMATH — the first resource for mathematics

Self-stress on a dielectric ball and Casimir-Polder forces. (English) Zbl 1432.81057
Summary: It has always been conventionally understood that, in the dilute limit, the Casimir energy of interaction between bodies or the Casimir self-energy of a dielectric body could be identified with the sum of the van der Waals or Casimir-Polder energies of the constituents of the bodies. Recently, this proposition for self-energies has been challenged by Y. Avni and U. Leonhardt [Ann. Phys. 395, 326–340 (2018; Zbl 1394.81159)], who find that the energy or self-stress of a homogeneous dielectric ball with permittivity \(\varepsilon\) begins with a term of order \(\varepsilon-1\). Here we demonstrate that this cannot be correct. The only possible origin of a term linear in \(\varepsilon-1\) lies in the bulk energy, that energy which would be present if either the material of the body, or of its surroundings, filled all space. Since Avni and Leonhardt correctly subtract the bulk terms, the linear term they find likely arises from their omission of an integral over the transverse stress tensor.

MSC:
81T55 Casimir effect in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Casimir, H. B.G.; Polder, D., Phys. Rev., 73, 360 (1948)
[2] Casimir, H. B.G., K. Ned. Akad. Wet. Proc., 51, 793 (1948)
[3] Lifshitz, E. M., Sov. Phys.—JETP, 2, 73 (1956)
[4] Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P., Sov. Phys. Usp., 4, 153-176 (1961)
[5] Brevik, I.; Marachevsky, V. N.; Milton, K. A., Phys. Rev. Lett., 82, 3948 (1999), http://dx.doi.org/10.1103/PhysRevLett.82.3948 [hep-th/9810062]
[6] Milton, K. A.; Ng, Y. J., Phys. Rev. E, 57, 5504 (1998), http://dx.doi.org/10.1103/PhysRevE.57.5504 [hep-th/9707122]
[7] Avni, Y.; Leonhardt, U., Ann. Phys., NY, 395, 326-340 (2018)
[8] Boyer, T. H., Phys. Rev., 174, 1764 (1968)
[9] Milton, K.; Brevik, I., Symmetry, 10, 3, 68 (2018), arXiv:1803.00450 [hep-th]
[10] Milton, K. A.; Ng, Y. J., Phys. Rev. E, 55, 4207 (1997), http://dx.doi.org/10.1103/PhysRevE.55.4207 [hep-th/9607186]
[11] Parashar, P.; Milton, K. A.; Li, Y.; Day, H.; Guo, X.; Fulling, S. A.; Cavero-Peláez, I., Phys. Rev. D, 97, Article 125009 pp. (2018), arXiv:1804.04045 [hep-th]
[12] Parashar, P.; Milton, K. A.; Shajesh, K. V.; Brevik, I., Phys. Rev. D, 96, Article 085010 pp. (2017), arXiv:1708.01222 [hep-th]
[13] Milton, K. A., Ann. Phys., NY, 127, 49 (1980)
[14] Lambiase, G.; Scarpetta, G.; Nesterenko, V. V., Modern Phys. Lett. A, 16, 1983-1995 (2001)
[15] Milton, K. A., The Casimir Effect: Physical Manifestations of Zero-Point Energy (2001), World Scientific: World Scientific Singapore · Zbl 1025.81003
[16] Brevik, I.; Kolbenstvedt, H., Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 26, 1490 (1982), http://dx.doi.org/10.1103/PhysRevD.25.1731, http://dx.doi.org/10.1103/PhysRevD.26.1490. Erratum
[17] Brevik, I.; Kolbenstvedt, H., Ann. Phys., NY, 143, 179-190 (1982)
[18] Brevik, I.; Kolbenstvedt, H., Ann. Phys., NY, 149, 237 (1983)
[19] Brevik, I., J. Phys. A, 20, 5189 (1987)
[20] Brevik, I.; Einevoll, G., Phys. Rev. D, 37, 2977 (1988)
[21] Brevik, I.; Nesterenko, V. V.; Pirozhenko, I. G., J. Phys. A, 31, 8661 (1998), http://dx.doi.org/10.1088/0305-4470/31/43/009 [hep-th/9710101]
[22] Bordag, M.; Kirsten, K.; Vassilevich, D., Phys. Rev. D, 59, Article 085011 pp. (1999), http://dx.doi.org/10.1103/PhysRevD.59.085011 [hep-th/9811015]
[23] Deutsch, D.; Candelas, P., Phys. Rev. D, 20, 3063 (1979)
[24] Kennedy, G.; Critchley, R.; Dowker, J. S., Ann. Phys., NY, 125, 346 (1980)
[25] Kennedy, G., Ann. Phys., NY, 138, 353 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.