×

Finite element analysis of influence of non-homogenous temperature field on designed lifetime of spatial structural elements under creep conditions. (English) Zbl 1432.74045

Summary: The techniques of modeling of continual fracture process for spatial bodies under long-term static force loading condition in non-homogenous temperature field are presented. The scalar damage parameter is used to describe the material continual fracture process. A stress-strain problem solution made with semianalytic finite element method (SFEM). Results of lifetime determination of responsible parts are presented.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74D10 Nonlinear constitutive equations for materials with memory
74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bazhenov V. A., Gulyar A. I., Pyskunov S. O., Sakharov A. S., Shkryl’ A. A., Maksimyuk Yu.V. (2011), Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 1. Theoretical background and a study of efficiency of fem procedure for solving three-dimensional problems of fracture mechanics. Strengths of Materials, 43 (1) 15-24.; Bazhenov, V. A.; Gulyar, A. I.; Pyskunov, S. O.; Sakharov, A. S.; Shkryl’, A. A.; Maksimyuk, Yu. V., Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 1, Theoretical background and a study of efficiency of fem procedure for solving three-dimensional problems of fracture mechanics. Strengths of Materials, 43, 1, 15-24 (2011) · doi:10.1007/s11223-011-9263-3
[2] Bazhenov V. A., Gulyar A. I., Pyskunov S. O., Sakharov A. S., Shkryl’ A. A., Maksimyuk Yu.V. (2011), Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 2. A procedure for computing the invariant J-integral in fem discrete models. Strengths of Materials, 43 (2) 122-133.; Bazhenov, V. A.; Gulyar, A. I.; Pyskunov, S. O.; Sakharov, A. S.; Shkryl’, A. A.; Maksimyuk, Yu. V., Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 2, A procedure for computing the invariant J-integral in fem discrete models. Strengths of Materials, 43, 2, 122-133 (2011) · doi:10.1007/s11223-011-9278-9
[3] Bazhenov V. A., Gulyar A. I., Sakharov A. S. (2012), Semianalytic finite element method in problems of dynamic of spatial bodies. ISBN: 9789662229424 (In Ukrainian).; Bazhenov, V. A.; Gulyar, A. I.; Sakharov, A. S., Semianalytic finite element method in problems of dynamic of spatial bodies. ISBN: 9789662229424 (In Ukrainian) (2012) · Zbl 1187.74107
[4] Bazhenov V. A., Gulyar A. I., Pyskunov S. O., Sakharov A. S. (2012), Semianalytic finite element method in problems of continual fracture of spatial bodies. ISBN: 9789662229714 (In Ukrainian).; Bazhenov, V. A.; Gulyar, A. I.; Pyskunov, S. O.; Sakharov, A. S., Semianalytic finite element method in problems of continual fracture of spatial bodies. ISBN: 9789662229714 (In Ukrainian) (2012)
[5] Bobyr M.I., Grabovsky A.P., Khalimon O.P. (2009), Damage and fracture of structural. Naukova dumka. (In Ukrainian).; Bobyr, M. I.; Grabovsky, A. P.; Khalimon, O. P., Damage and fracture of structural, Naukova dumka. (In Ukrainian) (2009)
[6] Golub V. P. (2000), The nonlinear mechanics of continual damage and its application to problems of creep and fatigue, International Applied Mechanics, 36 (3) 303-342.; Golub, V. P., The nonlinear mechanics of continual damage and its application to problems of creep and fatigue, International Applied Mechanics, 36, 3, 303-342 (2000) · Zbl 1078.74649 · doi:10.1007/BF02681915
[7] Kachanov L. M. (1986). Introduction to continuum damage mechanics, Springer Netherlands.; Kachanov, L. M., Introduction to continuum damage mechanics (1986) · Zbl 0596.73091 · doi:10.1007/978-94-017-1957-5
[8] Lelyukh Yu. I., Shevchenko Yu. N. (2006). On finite-element solution of spatial thermoviscoelastoplastic problems. International Applied Mechanics 42(5) 507-515.; Lelyukh, Yu. I.; Shevchenko, Yu. N., On finite-element solution of spatial thermoviscoelastoplastic problems, International Applied Mechanics, 42, 5, 507-515 (2006) · Zbl 1114.74395 · doi:10.1007/s10778-006-0113-0
[9] L’vov G. I., Lysenko S. V., Gorash E. N. (2008), Creep and creep-rupture strength of gas turbine components in view of nonuniform temperature distribution, Strengths of Materials 40 (5) 525-530.; L’vov, G. I.; Lysenko, S. V.; Gorash, E. N., Creep and creep-rupture strength of gas turbine components in view of nonuniform temperature distribution, Strengths of Materials, 40, 5, 525-530 (2008) · doi:10.1007/s11223-008-9066-3
[10] Mehta M. I., Kashyap B. P., Singh R. K. P., Kadam R., Bapat S. (2016), Estimation of Creep Failure Life of Rotor Grade Steel by Using Time-Temperature Parametric Methods, Transactions of the Indian Institute of Metals 69(2) 591-595.; Mehta, M. I.; Kashyap, B. P.; Singh, R. K. P.; Kadam, R.; Bapat, S., Estimation of Creep Failure Life of Rotor Grade Steel by Using Time-Temperature Parametric Methods, Transactions of the Indian Institute of Metals, 69, 2, 591-595 (2016) · doi:10.1007/s12666-015-0755-x
[11] Murakami S. (2012), Continuum Damage Mechanics, Springer Netherlands,; Murakami, S., Continuum Damage Mechanics. 10.1007/978-94-007-2666-6 (2012)
[12] Ponter A. R. S., Hayhurst D. R. (1980), Creep in Structures, Springer Berlin Heidelberg,; Ponter, A. R. S.; Hayhurst, D. R., Creep in Structures (1980) · doi:10.1007/978-3-642-81598-0
[13] Rabotnov Yu. N., Leckie F. A. (1969), Creep problems in structural members, North-Holland, ISBN: 9780720423570.; Rabotnov, Yu. N.; Leckie, F. A.; , Creep problems in structural members (1969) · Zbl 0184.51801
[14] Shevchenko Yu. N., Galishin A. Z., Babeshko M. E. (2015), Thermoviscoelastoplastic Deformation of Compound Shells of Revolution Made of a Damageable Material, International Applied Mechanics 51 (6) 607-613.; Shevchenko, Yu. N.; Galishin, A. Z.; Babeshko, M. E., Thermoviscoelastoplastic Deformation of Compound Shells of Revolution Made of a Damageable Material, International Applied Mechanics, 51, 6, 607-613 (2015) · doi:10.1007/s10778-015-0717-3
[15] Stepanova L. V., Igonin S. A. (2015), Rabotnov damageparameter and description of delayed fracture: Results, current status, application to fracture mechanics, and prospects, Journal of Applied Mechanics and Technical Physics, 56 (2) 282-292.; Stepanova, L. V.; Igonin, S. A., Rabotnov damageparameter and description of delayed fracture: Results, current status, application to fracture mechanics, and prospects, Journal of Applied Mechanics and Technical Physics, 56, 2, 282-292 (2015) · Zbl 1329.74265 · doi:10.1134/S0021894415020145
[16] Volkov I. A., Egunov V. V., Igumnov L. A., Kazakov D. A., Korotkikh Yu. G., Mitenkov F. M. (2015), Assessment of the service life of structural steels by using degradation models with allowance for fatigue and creep of the material, Journal of Applied Mechanics and Technical Physics 56 (6) 995-1006.; Volkov, I. A.; Egunov, V. V.; Igumnov, L. A.; Kazakov, D. A.; Korotkikh, Yu. G.; Mitenkov, F. M., Assessment of the service life of structural steels by using degradation models with allowance for fatigue and creep of the material, Journal of Applied Mechanics and Technical Physics, 56, 6, 995-1006 (2015) · Zbl 1381.74036 · doi:10.1134/S0021894415060097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.