zbMATH — the first resource for mathematics

Quadruply-graded colored homology of knots. (English) Zbl 1432.57026
Summary: We conjecture the existence of four independent gradings in colored HOMFLYPT homology, and make qualitative predictions of various interesting structures and symmetries in the colored homology of arbitrary knots. We propose an explicit conjectural description for the rectangular colored homology of torus knots, and identify the new gradings in this context. While some of these structures have a natural interpretation in the physical realization of knot homologies based on counting supersymmetric configurations (BPS states, instantons, and vortices), others are completely new. They suggest new geometric and physical realizations of colored HOMFLYPT homology as the Hochschild homology of the category of branes in a Landau-Ginzburg B-model or, equivalently, in the mirror A-model. Supergroups and supermanifolds are surprisingly ubiquitous in all aspects of this work.

57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
20C08 Hecke algebras and their representations
Full Text: DOI arXiv
[1] M. Aganagic and S. Shakirov, Knot homology from refined Chern-Simons theory, arXiv:1105.5117v2 (2012). [3] M. Aganagic and C. Vafa, Mirror symmetry and supermanifold, Adv. Theor. Math. Phys. 8 (2004), 939-954.
[2] R. Auzzi, M. Shifman and A. Yung, Composite non-Abelian flux tubes in N = 2 SQCD, Phys. Rev. D 73 (2006), 105012; Erratum, ibid. 76 (2007), 109901. [5] J. M. Baptista, Non-abelian vortices, Hecke modifications and singular monopoles, Lett. Math. Phys. 92 (2010), 243-252. [6] A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. Math. 64 (1987), 118-175. [7] A. Berele and A. Regev, Hook Young diagrams, combinatorics and representations of Lie superalgebras, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 337-339. [8] S. B. Bradlow and O. García-Prada, Stable triples, equivariant bundles and dimensional reduction, Math. Ann. 304 (1996), 225-252.
[3] S. B. Bradlow and O. García-Prada, Non-abelian monopoles and vortices, in: Geometry and Physics (Aarhus, 1995), Lecture Notes in Pure Appl. Math. 184, Dekker, New York, 1997, 567-589. [10] L. Carini and J. B. Remmel, Formulas for the expansion of the plethysms s2[s(a,b)] and s2[s(nk)], Discrete Math. 193 (1998), 147-177. [11] S. Cautis, Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (2015), 1053-1115. [12] S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves II, slmcase, Invent. Math. 174 (2008), 165-232. [13] S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, coloured links, Quantum Topol. 8 (2017), 381-411. [14] I. Cherednik, Jones polynomials of torus knots via DAHA, Int. Math. Res. Notices 2013, 5366-5425. [15] B. Cooper, M. Hogancamp and V. Krushkal, SO(3) homology of graphs and links, Algebr. Geom. Topol. 11 (2011), 2137-2166. [16] B. Cooper and V. Krushkal, Categorification of the Jones-Wenzl projectors, Quantum Topol. 3 (2012), 139-180. [17] K. Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), 165-214. [18] T. Dimofte and S. Gukov, Refined, motivic, and quantum, Lett. Math. Phys. 91 (2010), 1-27. [19] T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011), 225-287. [20] N. M. Dunfield, S. Gukov and J. Rasmussen, The superpolynomial for knot homologies, Experiment. Math. 15 (2006), 129-159. [21] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov and A. Smirnov, Superpolynomials for torus knots from evolution induced by cut-and-join operators, J. High Energy Phys. 2013, no. 3, 021, 85 pp.
[4] B. Elias and M. Hogancamp, On the computation of torus link homology, arXiv: 1603.00407 (2016). [23] P. Etingof, E. Gorsky and I. Losev, Representations of rational Cherednik algebras with minimal support and torus knots, Adv. Math. 277 (2015), 124-180.
[5] P. Etingof and X. Ma, Lecture notes on Cherednik algebras, arXiv:1001.0432 (2010). [25] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96 (2006), no. 16, 161601. [26] M. Eto, K. Konishi, G. Marmorini, M. Nitta, K. Ohashi, W. Vinci and N. Yokoi, Non-Abelian vortices of higher winding numbers, Phys. Rev. D 74 (2006), no. 6, 065021. [27] E. Frenkel and E. Witten, Geometric endoscopy and mirror symmetry, Comm. Number Theory Phys. 2 (2008), 113-283. [28] I. Frenkel, C. Stroppel and J. Sussan, Categorifying fractional Euler characteristics, Jones-Wenzl projectors and 3j-symbols, Quantum Topol. 3 (2012), 181-253. [29] H. Fuji, S. Gukov, M. Stošić and P. Sułkowski, 3d analogs of Argyres-Douglas theories and knot homologies, J. High Energy Phys. 2013, no. 1, 175, 37 pp. [30] H. Fuji, S. Gukov, P. Sułkowski and H. Awata, Volume conjecture: refined and categorified, Adv. Theor. Math. Phys. 16 (2012), 1669-1777. [31] H. Fuji, S. Gukov and P. Sułkowski, Super-A-polynomial for knots and BPS states, Nuclear Phys. B 867 (2013), 506-546.
[6] R. S. Garavuso, L. Katzarkov, M. Kreuzer and A. Noll, Super Landau-Ginzburg mirrors and algebraic cycles, J. High Energy Phys. 2011, no. 3, 017, 28 pp.: Erratum ibid. 2011, no. 8, 063, 5 pp. [33] M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, in: Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemp. Math. 134, Amer. Math. Soc., Providence, RI, 1992, 51-92; A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra 48 (1987), 229-247. [34] R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999), 1415-1443. [35] E. Gorsky, q, t-Catalan numbers and knot homology, in: Zeta Functions in Algebra and Geometry, Contemp. Math. 566, Amer. Math. Soc., Providence, RI, 2012, 212- 232. [36] E. Gorsky, Arc spaces and DAHA representations, Selecta Math. (N.S.) 19 (2013), 125-140. [37] E. Gorsky and A. Neguţ, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9) 104 (2015), 403-435.
[7] E. Gorsky, A. Neguţ and J. Rasmussen, Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology, arXiv:1608.07308 (2016). [39] E. Gorsky, A. Oblomkov and J. Rasmussen, On stable Khovanov homology of torus knots, Experiment. Math. 22 (2013), 265-281. [40] E. Gorsky, A. Oblomkov, J. Rasmussen and V. Shende, Torus knots and the rational DAHA, Duke Math. J. 163 (2014), 2709-2794. [41] S. Gukov, Gauge theory and knot homologies, Fortschr. Phys. 55 (2007), 473-490. · Zbl 1281.57003
[8] S. Gukov and I. Saberi, Lectures on knot homology and quantum curves, arXiv:1211. 6075 (2012). [43] S. Gukov, A. S. Schwarz and C. Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005), 53-74.
[9] S. Gukov and M. Stošić, Homological algebra of knots and BPS states, in: StringMath 2011, Proc. Sympos. Pure Math. 85, Amer. Math. Soc., Providence, RI, 2012, 125-171.
[10] S. Gukov and J. Walcher, Matrix factorizations and Kauffman homology, arXiv: hep-th/0512298 (2005).
[11] S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, in: Current Developments in Mathematics, 2006, Int. Press, Somerville, MA, 2008, 35-180. [47] S. M. Gusein-Zade and A. Varchenko, Verlinde algebras and the intersection form on vanishing cycles, Selecta Math. (N.S.) 3 (1997), 79-97. [48] K. Hashimoto and D. Tong, Reconnection of non-Abelian cosmic strings, J. Cosmol. Astropart. Phys. 2005, no. 2, 004, 20 pp. [49] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383-408.
[12] M. Hogancamp, Stable homology of torus links via categorified Young symmetrizers I: one-row partitions, arXiv:1505.08148v1 (2015). [51] M. Ionel, S. Karigiannis and M. Min-Oo, Bundle constructions of calibrated submanifolds in R7and R8, Math. Res. Lett. 12 (2005), 493-512. [52] A. Iqbal and C. Kozçaz, Refined Hopf link revisited, J. High Energy Phys. 2012, no. 4, 046, 18 pp.
[13] D. L. Jafferis and G. W. Moore, Wall crossing in local Calabi-Yau manifolds, arXiv:0810.4909 (2008). [54] S. Karigiannis and M. Min-Oo, Calibrated subbundles in non-compact manifolds of special holonomy, Ann. Global Anal. Geom. 28 (2005), 371-394. [55] S. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nuclear Phys. B 497 (1997), 173-195. [56] M. Khovanov, Categorification of the Jones polynomial, Duke Math. J. 101 (2000), 359-426. [57] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), 1-91. [58] M. Khovanov and L. Rozansky, Matrix factorizations and link homology II, Geom. Topol. 12 (2008), 1387-1425.
[14] A. A. Kirillov and I. M. Pak, Covariants of the symmetric group and its analogues in Weyl algebras, Funct. Anal. Appl. 24 (1990), 172-176. · Zbl 0821.20002
[15] M. Kontsevich, Homological algebra of mirror symmetry, in: Proc. Int. Congress of Mathematicians (Zürich, 1994), Birkhäuser, Basel, 1995, Vol. 1, 120-139. · Zbl 0846.53021
[16] M. Kontsevich and Y. Soibelman, Notes on A∞-algebras, A∞-categories and noncommutative geometry, in: Homological Mirror Symmetry, Lecture Notes in Phys. 757, Springer, Berlin, 2009, 153-219. [62] S. Koshkin, Conormal bundles to knots and the Gopakumar-Vafa conjecture, Adv. Theor. Math. Phys. 11 (2007), 591-634. [63] J. M. F. Labastida, M. Mariño and C. Vafa, Knots, links and branes at large N, J. High Energy Phys. 2000, no. 11, 007, 42 pp. · Zbl 1202.81120
[17] X.-S. Lin and H. Zheng, On the Hecke algebras and the colored HOMFLYPT polynomial, Trans. Amer. Math. Soc. 362 (2010), 1-18. · Zbl 1193.57006
[18] I. G. Macdonald, A new class of symmetric functions, Actes du 20e Séminaire Lotharingien de Combinatoire B20a, Publ. I.R.M.A. Strasbourg 372/S-20 (1988), 131-171. [66] V. Mikhaylov and E. Witten, Branes and supergroups, Comm. Math. Phys. 340 (2015), 699-832. [67] V. Molchanov, On the Poincaré series of representations of finite reflection groups, Funct. Anal. Appl. 26 (1992), 143-145.
[19] K. Nagao and H. Nakajima, Counting invariant of perverse coherent sheaves and its wall-crossing, Int. Math. Res. Notices 2011, 3885-3938. [69] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, Amer. Math. Soc., Providence, RI, 1999. [70] H. Nakajima and K. Yoshioka, Lectures on instanton counting, in: Algebraic Structures and Moduli Spaces, CRM Proc. Lecture Notes 38, Amer. Math. Soc., Providence, RI, 2004, 31-101. [71] S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for twist knots, J. High Energy Phys. 2012, no. 11, 157, 38 pp. [72] N. Nekrasov and S. Shadchin, ABCD of instantons, Comm. Math. Phys. 252 (2004), 359-391. [73] H. Ooguri and C. Vafa, Knot invariants and topological strings, Nuclear Phys. B 577 (2000), 419-438.
[20] D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 2004, no. 3 (246), 227-248. · Zbl 1101.81093
[21] H. Queffelec and A. Sartori, Mixed quantum skew Howe duality and link invariants of type A, arXiv:1504.01225 (2015). · Zbl 07032784
[22] H. Queffelec and A. Sartori, A note on the glm|nlink invariants and the HOMFLYPT polynomial, arXiv:1506.03329 (2015). [77] J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), 419-447.
[23] J. Rasmussen, Some differentials on Khovanov-Rozansky homology, Geom. Topol. 19 (2015), 3031-3104. [79] M. Rosso and V. Jones, On the invariants of torus knots derived from quantum groups, J. Knot Theory Ramif. 2 (1993), 97-112. [80] L. Rozansky, An infinite torus braid yields a categorified Jones-Wenzl projector, Fund. Math. 225 (2014), 305-326. [81] A. Sartori, The Alexander polynomial as quantum invariant of links, Ark. Mat. 53 (2015), 177-202. [82] A. Schwarz, Sigma-models having supermanifolds as target spaces, Lett. Math. Phys. 38 (1996), 91-96.
[24] E. Sharpe, Lectures on D-branes and sheaves, arXiv:hep-th/0307245 (2003). [84] S. Sethi, Supermanifolds, rigid manifolds and mirror symmetry, Nuclear Phys. B 430 (1994), 31-50. [85] S. Stevan, Chern-Simons invariants of torus links, Ann. Henri Poincaré 11 (2010), 1201-1224. [86] M. Stošić, Homological thickness and stability of torus knots, Algebr. Geom. Topol. 7 (2007), 261-284. [87] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T-duality, Nuclear Phys. B 479 (1996), 243-259. [88] K. Taipale, K-theoretic J-functions of type A flag varieties, Int. Math. Res. Notices 2013, 3647-3677.
[25] C. Taubes, Lagrangians for the Gopakumar-Vafa conjecture, in: The Interaction of Finite-Type and Bromov-Witten Invariants (BIRS 2003), Geom. Topol. Monogr. 8, Geom. Topol. Publ., Coventry, 2006, 73-95. [90] D. Tubbenhauer, P. Vaz and P. Wedrich, Super q-Howe duality and web categories, Algebr. Geom. Topol. 17 (2017), 3703-3749.
[26] C. Vafa, Brane/anti-brane systems and U (N |M ) supergroup, arXiv:hep-th/0101218 (2001).
[27] B. Webster, Knot invariants and higher representation theory II: the categorification of quantum knot invariants, arXiv:1005.4559v7 (2013).
[28] P. Wedrich, Exponential growth of colored HOMFLY-PT homology, arXiv:1602. 02769 (2016). [94] E. Witten, Quantum field theory and Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. [95] E. Witten, D-branes and K-theory, J. High Energy Phys. 1998, no. 12, 019, 41 pp. [96] E. Witten, Fivebranes and knots, Quantum Topol. 3 (2012), 1-137. [97] E. Witten, Perturbative gauge theory as a string theory in twistor space, Comm. Math. Phys. 252 (2004), 189-258.
[29] H. Wu, A colored sl(N ) homology for links in S3, Dissertationes Math. 499 (2014). [99] A. Yekutieli, The continuous Hochschild cochain complex of a scheme, Canad. J. Math. 54 (2002), 1319-1337.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.