×

zbMATH — the first resource for mathematics

Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. (English) Zbl 1432.35194
Summary: Boundary value problems for integrable nonlinear differential equations can be analyzed via the Fokas method. In this paper, this method is employed in order to study initial-boundary value problems of the general coupled nonlinear Schrödinger equation formulated on the finite interval with \(3 \times 3\) Lax pairs. The solution can be written in terms of the solution of a \(3 \times 3\) Riemann-Hilbert problem. The relevant jump matrices are explicitly expressed in terms of the three matrix-value spectral functions \(s(k)\), \(S(k)\), and \(S_L(k)\). The associated general Dirichlet to Neumann map is also analyzed via the global relation. It is interesting that the relevant formulas can be reduced to the analogous formulas derived for boundary value problems formulated on the half-line in the limit when the length of the interval tends to infinity. It is shown that the formulas characterizing the Dirichlet to Neumann map coincide with the analogous formulas obtained via a Gelfand-Levitan-Marchenko representation.

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35P25 Scattering theory for PDEs
35Q15 Riemann-Hilbert problems in context of PDEs
35Q51 Soliton equations
35R30 Inverse problems for PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lax, P. D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21, 467-490, (1968) · Zbl 0162.41103
[2] Gardener, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Methods for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097, (1967) · Zbl 1103.35360
[3] Ablowitz, M. J.; Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press Cambridge, UK · Zbl 0762.35001
[4] Fokas, A. S., A unified transform method for solving linear and certain nonlinear pdes, Proc. R. Soc. Lond. Ser. A, 453, 1411-1443, (1997) · Zbl 0876.35102
[5] Fokas, A. S., On the integrability of linear and nonlinear partial differential equations, J. Math. Phys., 41, 4188-4237, (2000) · Zbl 0994.37036
[6] Fokas, A. S., Integrable nonlinear evolution equations on the half-line, Comm. Math. Phys., 230, 1-39, (2002) · Zbl 1010.35089
[7] Fokas, A. S., A unified approach to boundary value problems, (CBMS-NSF Regional Conference Series in Applied Mathematics, (2008), SIAM) · Zbl 1165.35478
[8] Fokas, A. S.; Its, A. R., An initial-boundary value problem for the sine-Gordon equation, Theoret. Math. Phys., 92, 388-403, (1992) · Zbl 0802.35133
[9] Fokas, A. S.; Its, A. R., An initial-boundary value problem for the Korteweg-de Vries equation, Math. Comput. Simulation, 37, 293-321, (1994) · Zbl 0832.35125
[10] Fokas, A. S.; Its, A. R., The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal., 27, 738-764, (1996) · Zbl 0851.35122
[11] Fokas, A. S.; Its, A. R., The nonlinear Schrödinger equation on the interval, J. Phys. A, 37, 6091-6114, (2004) · Zbl 1057.37063
[12] Fokas, A. S.; Its, A. R.; Sung, L. Y., The nonlinear Schrödinger equation on the half-line, Nonlinearity, 18, 1771-1822, (2005) · Zbl 1181.37095
[13] Boutet de Monvel, A.; Fokas, A. S.; Shepelsky, D., The mkdv equation on the half-line, J. Inst. Math. Jussieu, 3, 139-164, (2004) · Zbl 1057.35050
[14] Boutet de Monvel, A.; Fokas, A. S.; Shepelsky, D., Integrable nonlinear evolution equations on a finite interval, Comm. Math. Phys., 263, 133-172, (2006) · Zbl 1131.37064
[15] Treharne, P. A.; Fokas, A. S., The generalized Dirichlet to Neumann map for the KdV equation on the half-line, J. Nonlinear Sci., 18, 191-217, (2008) · Zbl 1187.35225
[16] Mantzavinos, D.; Fokas, A. S., The Kadomtsev-Petviashvili II equation on the half-plane, Phys. D, 240, 477-511, (2011) · Zbl 1216.35121
[17] Fokas, A. S.; Lenells, J., The unified method: I. nonlinearizable problem on the half-line, J. Phys. A: Math. Theor., 45, 195201, (2012) · Zbl 1256.35044
[18] Lenells, J.; Fokas, A. S., The unified method: II. NLS on the half-line t-periodic boundary conditions, J. Phys. A: Math. Theor., 45, 195202, (2012) · Zbl 1256.35045
[19] Lenells, J.; Fokas, A. S., The unified method: III. nonlinearizable problem on the interval, J. Phys. A: Math. Theor., 45, 195203, (2012) · Zbl 1256.35046
[20] Its, A. R.; Shepelsky, D., Initial boundary value problem for the focusing NLS equation with Robin boundary condition: half-line approach, Proc. R. Soc. Lond. Ser. A, 469, 20120199, (2013), 14 pp · Zbl 1371.35272
[21] Constantin, A.; Redou, P., On the inverse scattering approach to the Camassa-Holm equation, J. Nonlinear Math. Phys., 10, 252-255, (2003) · Zbl 1038.35067
[22] Constantin, A., On the Cauchy problem for the periodic Camassa-Holm equation, J. Differential Equations, 141, 218-235, (1997) · Zbl 0889.35022
[23] Kalimeris, K., Explicit soliton asymptotics for the nonlinear Schrödinger equation on the half-line, J. Nonlinear Math. Phys., 17, 445-452, (2010) · Zbl 1216.35140
[24] Kamvissis, S., Semiclassical nonlinear Schrödinger on the half line, J. Math. Phys., 44, 5849-5868, (2003) · Zbl 1063.37067
[25] Miller, P. D.; Qin, Z., Initial-boundary value problems for the defocussing nonlinear Schrödinger equation in the semiclassical limit, Stud. Appl. Math., 134, 276-362, (2015) · Zbl 1314.35166
[26] Pelloni, B.; Pinotsis, D. A., The elliptic sine-Gordon equation in a half plane, Nonlinearity, 23, 77-88, (2010) · Zbl 1182.35108
[27] Kitaev, A. V.; Vartanian, A. H., Asymptotics of solutions to the modified nonlinear Schrödinger equation: solution on a nonvanishing continuous background, SIAM J. Math. Anal., 30, 787-832, (1999) · Zbl 0958.35127
[28] Cheng, P. J.; Venakides, S.; Zhou, X., Long-time asymptotics for the pure radiation solution of the sine-Gordon equation, Comm. Partial Differential Equations, 24, 1195-1262, (1999) · Zbl 0937.35154
[29] Xu, J.; Fan, E. G., Long-time asymptotics for the Fokas-lenells equation with decaying initial value problem: without solitons, J. Differential Equations, 259, 1098-1148, (2015) · Zbl 1317.35169
[30] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems: asymptotics for the mkdv equation, Ann. of Math. (2), 137, 295-368, (1993) · Zbl 0771.35042
[31] Lenells, J., Initial-boundary value problems for integrable evolution equations with \(3 \times 3\) Lax pairs, Phys. D, 241, 857-875, (2012) · Zbl 1251.35006
[32] Lenells, J., The Degasperis-Procesi equation on the half-line, Nonlinear Anal., 76, 122-139, (2013) · Zbl 1253.35138
[33] Xu, J.; Fan, E., The unified transform method for the sasa-Satsuma equation on the half-line, Proc. R. Soc. Ser. A, 469, 20130068, (2013) · Zbl 1348.35249
[34] Geng, X.; Wu, J., Riemann-Hilbert approach and N-soliton solutions for a generalized sasa-Satsuma equation, Wave Motion, 60, 62-72, (2016) · Zbl 07064143
[35] Xu, J.; Fan, E., The three wave equation on the half-line, Phys. Lett. A, 378, 26-33, (2014) · Zbl 1396.31001
[36] Xu, J.; Fan, E., Initial-boundary value problem for integrable nonlinear evolution equation with \(3 \times 3\) Lax pairs on the interval, Stud. Appl. Math., 136, 321-354, (2016) · Zbl 1339.35205
[37] Geng, X.; Liu, H.; Zhu, J., Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line, Stud. Appl. Math., 135, 310-346, (2015) · Zbl 1338.35408
[38] Biondini, G.; Bui, A., On the nonlinear Schrödinger equation on the half line with homogeneous Robin boundary conditions, Stud. Appl. Math., 129, 249-271, (2012) · Zbl 1277.35312
[39] Manakov, S. V., Nonlinear Fraunhofer diffraction, Zh. Eksp. Teor. Fiz., Sov. Phys. JETP, 38, 248, (1974)
[40] Zakharov, V. E.; Schulman, E. I., To the integrability of the system of two coupled nonlinear Schrödinger equations, Phys. D, 4, 270, (1982) · Zbl 1194.35435
[41] Kanna, T.; Lakshmanan, M.; Tchofo Dinda, P.; Akhmediev, N., Phys. Rev. E, 73, (2006)
[42] Wang, D. S., Symmetries and prolongation structure theory of some nonlinear wave equations, (2008), Chinese Academy of Sciences, PhD thesis
[43] Wang, D. S.; Zhang, D. J.; Yang, J. K., Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys., 51, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.